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ABSTRACT

Evidence ranging from behavioural adaptations to neurocognitive theories has made significant advances into
our understanding of feedback-based learning. For instance, over the past twenty years research using elec-
troencephalography has demonstrated that the amplitude of a component of the human event-related brain
potential — the reward positivity — appears to change with learning in a manner predicted by reinforcement
learning theory (Holroyd and Coles, 2002; Sutton and Barto, 1998). However, while the reward positivity (also
known as the feedback related negativity) is well studied, whether the component reflects an underlying learning
process or whether it is simply sensitive to feedback evaluation is still unclear. Here, we sought to provide
support that the reward positivity is reflective of an underlying learning process and further we hoped to de-
monstrate this in a real-world medical education context. In the present study, students with no medical training
viewed a series of patient cards that contained ten physiological readings relevant for diagnosing liver and
biliary disease types, selected the most appropriate diagnostic classification, and received feedback as to whether
their decisions were correct or incorrect. Our behavioural results revealed that our participants were able to
learn to diagnose liver and biliary disease types. Importantly, we found that the amplitude of the reward po-
sitivity diminished in a concomitant manner with the aforementioned behavioural improvements. In sum, our
data support theoretical predictions (e.g., Holroyd and Coles, 2002), suggest that the reward positivity is an
index of a neural learning system, and further validate that this same system is involved in learning across a wide
range of contexts.

1. Introduction of the environment in order to adapt behaviours and predictions (Sato

et al., 2005; Yeung and Sanfey, 2004). The former of these processes

Converging evidence has made significant advances into under-
standing how humans learn from feedback. Whereas pioneer research
has described how behaviours change in response to rewards and
punishments (Skinner, 1958), more recent studies have theorized the
neural mechanisms that underlie reward learning systems within the
brain (Holroyd and McClure, 2015). In particular, neuroimaging studies
have discovered that there are at least two neurocognitive mechanisms
to learning from feedback. First, it has become evident that there is an
early, unconscious system that is sensitive to violations of expectancy
(Holroyd and Coles, 2002; Holroyd and Krigolson, 2007; Krigolson
et al., 2014; Sutton and Barto, 1998). Second, there also appears to be a
later conscious system responsible for updating mental representations

has been theorized to be driven by the midbrain dopamine system
which delivers signals that reflect reward prediction errors — the degree
to which the predictions of outcomes do not match the actual outcomes
— to the anterior cingulate cortex (ACC; Holroyd and McClure, 2015;
Schultz et al., 1997). More precisely, within this specific framework
(i.e., Holroyd and Coles, 2002), prediction errors are computed within
the basal ganglia, and projected to the ACC via the midbrain dopamine
system. Computational theories describe the ACC to be a ‘controller’ of
cognitive resources in that it integrates these dopamine signals and
directs how to best use resources across the brain in order to learn from
the environment (Holroyd and McClure, 2015).

Over the past twenty years there has been a large body of work
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examining the electroencephalographic (EEG) responses of these re-
ward signals. In 1997, Miltner, Braun, and Coles first reported the
feedback related negativity (FRN), a component of the human event-
related brain potential (ERP) evoked by the processing of outcome
feedback that is now theorized by some to reflect the arrival of dopa-
mine signals at the ACC (Holroyd and Coles, 2002; Holroyd and
McClure, 2015; Holroyd and Yeung, 2012; Schultz et al., 1997). More
recently, it has been suggested that the FRN should be framed as reward
positivity reflecting the sensitivity of this component to positive as
opposed to negative outcomes (Foti et al., 2011; Holroyd et al., 2008;
Proudfit, 2015). The reward positivity component arises in frontal-
central regions of the scalp 250 to 350 ms following performance
feedback (Proudfit, 2015). Specifically, it is theorized to be the ERP
analog of reward prediction error dopamine signals arriving at the ACC
(Holroyd and Coles, 2002; Holroyd and McClure, 2015; Holroyd and
Yeung, 2012).

If the Holroyd and Coles hypothesis is true, it seems logical that the
amplitude of the reward positivity should reflect underlying learning
processes — yet, to date, findings are mixed. For instance, Krigolson
et al. (2014) demonstrated that the amplitude of the reward positivity
diminished with learning, a result also reported by the same group in
2009 (Krigolson, Pierce, Tanaka, & Holroyd) and by others (Bellebaum
and Colosio, 2014; Bellebaum and Daum, 2008; Eppinger et al., 2008;
Luque et al., 2012; Sailer et al., 2010). Other studies, however, have
found that behavioural and neural changes linked to learning did not
always coincide (Bellebaum et al., 2010; Eppinger et al., 2009; Groen
et al, 2007; Hammerer et al., 2010; Holroyd and Coles, 2002;
Nieuwenhuis et al., 2002; see Walsh and Anderson, 2012 for a review).
As such, it is unclear if the reward positivity reflects an underlying
learning process or whether it is simply sensitive to feedback evalua-
tion.

One potential explanation for the conflicting findings may relate to
whether the information in experimental paradigms is relevant and/or
learnable. For example, in some of the gambling paradigms typically
used to study the reward positivity no learning can actually occur. This
was explored by Bellebaum and Colosio (2014) who had participants
make decisions about alphabetic characters in which feedback for some
stimuli was contingent on participant responses (learning could occur),
while for other stimuli it was not (learning could not occur). They found
that the reward positivity amplitude decreased across the task only for
the contingent stimuli. As such, it appears to be important that we study
the reward positivity in tasks where learning can occur. Related to that,
is the relationship between information and outcomes. Specifically, in
the aforementioned studies participants had to learn about shapes
(Bellebaum and Daum, 2008; Bellebaum et al., 2010; Krigolson et al.,
2009; Krigolson et al., 2014; Sailer et al., 2010), simple objects
(Eppinger et al., 2008; Eppinger et al., 2009; Groen et al., 2007;
Holroyd and Coles, 2002; Luque et al., 2012), and alphabetic characters
(Bellebaum and Colosio, 2014; Hammerer et al., 2010; Nieuwenhuis
et al.,, 2002). However, in none of these experiments did the stimuli
naturally lead to a correct answer. In other words, the stimulus-re-
sponse mappings were in a sense both arbitrary and meaningless. Put
another way, what was learned by participants in these studies could
never be used in, nor ever arise from, any natural environments.

In contrast, behavioural research has explored learning in real-
world contexts. For example, two recent studies have demonstrated the
efficacy of reinforcement learning in medical education (Anderson
et al., 2016; Xu et al., 2016). Anderson et al. (2016) used a reinforce-
ment learning paradigm to enhance the teaching of neuroanatomy to
medical students. Specifically, they had participants learn to identify
neuroanatomical structures via a computer based trial and error
shaping process — participants saw an image with a label, determined
whether the structure and label were correctly matched, and were
provided with feedback about the accuracy of their response. Im-
portantly, participants learned to identify multiple neuroanatomical
structures as was indicated by increasing accuracy rates and decreasing
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response times (Anderson et al., 2016). Further evidence supporting
this in a medical education context comes from Xu et al. (2016) who
used a similar approach to teach students to correctly categorize mel-
anoma. These paradigms are progressing in the correct direction, yet
still rely on simple stimuli (e.g., an image). We propose that to truly
understand how learning occurs organically it is important to extend
these findings to learning more complex real-world material while at
the same time investigating the neural processes involved.

Here, we seek to demonstrate that changes in the reward positivity
are related to an actual learning process and moreover that the system
underlying this component plays a role when learning complex real-
world material. In the current study, participants were to learn to di-
agnose liver and biliary diseases by making judgments on patient case-
studies and utilizing simple performance feedback while electro-
encephalographic data were recorded. We hypothesized that partici-
pants would be able to learn complex data structures in order to cate-
gorize clinical cases through the use of a reinforcement learning
paradigm. Specifically, we predicted that accuracy rates would be
higher and reaction times (i.e., viewing the patient card and viewing
the diagnostic options) would be quicker late in each phase, when
learning has occurred, as opposed to early in each phase. Further, we
predicted that participants would score higher than chance on a re-
tention test. In regards to neural data, we hypothesized that perfor-
mance feedback would elicit a reward positivity — indicating the pro-
cessing of said feedback. Importantly, we also predicted that the
amplitude of the reward positivity would diminish with learning — a
result in line with previous work and theoretical predictions (i.e.,
Sutton and Barto, 1998).

2. Methods
2.1. Participants

Thirty undergraduate students with no medical training (23 female,
mean age 20 years old [CI: + 1 year]) from the University of Victoria
participated in the experiment. All participants had normal or cor-
rected-to-normal vision, no neurological impairments, and volunteered
for extra course credit in a psychology course. Four participants were
removed as they did not progress past the first phase (see below) re-
sulting in twenty-six participants (19 female, mean age 20 years old
[CI: £ 1 year]). All participants provided informed consent approved
by the Human Research Ethics Board at the University of Victoria, and
the study followed ethical standards as prescribed in the 1964
Declaration of Helsinki.

2.2. Apparatus and procedure

Participants were seated in a sound dampened room in front of a 19”
LCD computer monitor and used a handheld 5-button RESPONSEPixx
(VPixx, Vision Science Solutions, Quebec, Canada) controller to com-
plete an adaptation of the Cards reinforcement learning paradigm
(Bannister et al., 2016; Burak et al., 2015; Horrey et al., 2016; Kazoleas,
2016; Tang et al., 2016) written in MATLAB (Version 8.6, Mathworks,
Natick, U.S.A.) using the Psychophysics Toolbox extension (Brainard,
1997).

Cards teaches participants through the application of reinforcement
learning principles. In our experiment, participants were presented with
physiological data (e.g., liver enzyme values) which they then used to
make clinical decisions. Specifically, participants learned to classify five
types of liver and biliary diseases: cholestatic intrahepatic, cholestatic
extrahepatic, mild hepatocellular, moderate hepatocellular, and severe
hepatocellular. This classification mimics the first step of cognitive
organization structures called “schemes”, a process particularly as-
cribed to expertise (Coderre et al., 2003). During each clinical case (i.e.,
trial) of the experiment, participants were shown a patient case-study
card followed by a multiple-choice presentation of the diagnostic
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Fig. 1. Example of a patient card that is presented to participants. Card includes a patient
photo and ten physiological readings. The card was presented in colour.

classification options. Following a participant's diagnosis, a feedback
screen indicated whether or not the diagnostic classification was correct
or incorrect.

The patient card presented included a photo of the ‘patient’ and 10
physiological readings (see Fig. 1). The patient's photo was randomly
determined, without replacement, by a pool of 357 profiles (69% fe-
male; Minear and Park, 2004). All ‘patients’ were 50 to 93 years old
with no outward manifestations of any liver or biliary diseases. To
extend the length of the task, the photos were repeated once in a newly
randomized order proceeding the first presentation of the entire set.
This resulted in a total of 714 possible trials. The physiological data
were displayed in five rows and two columns where the text was dis-
played in a green, purple, blue, yellow and white Arial font from top to
bottom, respectively. To ensure participants were learning to discern
which variables were necessary to classify clinical cases (rather than
spatial locations), the physiological data were randomly placed across
the card on each trial. Five of the ten physiological readings (heart rate,
blood oxygen level, blood pressure, respiratory rate, temperature) were
distractor variables and were not useful for diagnosing clinical cases.
The remainder of the variables (alkaline phosphatase, alanine amino-
transferase, aspartate aminotransferase, gamma-glutamyl transferase,
ultrasound reading) was pertinent to the clinical cases and varied as a
function of the patient's disease. For each variable presentation, a
random number was generated within a respective and appropriate
range thus ensuring that no two cards were the same. All cards were
generated and verified by a medical expert in the clinical area as to
their accuracy and validity. Importantly, participant did not receive any
of the aforementioned information, nor were they trained on any of the
variables or diseases in the experiment. Participants were able to view
the patient card as long as needed and once ready to make a decision,
they pressed a button to continue to the decision stage. For each trial,
we measured the card viewing time: the time participants took to in-
dicate that they were ready to make a decision.

The decision stage of each trial involved selecting from one of the
five types of liver and biliary diseases. The diagnostic classification
options were presented in the same array as the response box in a white
Arial font. The options were bordered by a colour (left: green, right: red,
top: yellow, bottom: blue) to match the coloured buttons of the re-
sponse box. Participants selected a specific diagnostic classification
option by pushing the appropriate response button, after which the
border of the selection raised in brightness. Following this, participants
confirmed their response by pressing the center button on the response
box, or alternatively, they could unselect their response by pressing any
of the outer buttons. To ensure that participants were learning the di-
agnostic classification (rather than spatial locations), we randomized
which diagnostic classifications appeared in a given location. Similar to
the patient card stage of the experiment, participants were able to
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remain in the selection screen as long as they needed which we quan-
tified as diagnostic option viewing time. Once participants submitted
their response, a white fixation cross appeared for 400 ms to 600 ms so
that the upcoming feedback stimuli could be analyzed independently of
motor activity. Feedback of the decision was then presented as either a
‘/’ (correct) or an ‘X’ (incorrect) in a white Arial font. This feedback
stimulus was presented for 1000 ms. Importantly, this was the only
feedback provided to participants — they were never given information
on why they had made the correct or incorrect decision, or on how to
reach the correct decision. At the offset of feedback, the next trial would
begin by presenting the next patient card.

To facilitate learning, the experimental task was broken into four
phases. In the first phase, participants only had to learn two of the five
possible clinical diagnostic classifications. After participants were able
to achieve an accuracy of 90% for two consecutive blocks, each con-
taining 20 trials, the participants moved to the second phase of the
experiment wherein another diagnostic classification was added to the
potential cases the participant saw. Again, movement to the next phase
of the experiment occurred when participants completed two successive
blocks of trials within which they achieved an accuracy of at least 90%.
The third and fourth phases occurred in a similar fashion, with an ad-
ditional possible diagnostic classification being added during each
phase to bring the total number of possible case types to four, and five,
respectively. The number of available responses (answers) matched the
number of diseases in each phase. Once the participant completed
phase four, the experiment ended. After a twenty-minute break within
which participants completed a distractor task, a pen and paper re-
tention test was given to participants.

In the distractor task, participants were to choose between a series
of paired coloured squares, one of which was more often rewarding
than the other. The purpose of this distractor task was to ensure that
participants' performance on the post-test relied on information that
had been consolidated to long-term memory (Liu and Fu, 2007). The
post-test consisted of twenty multiple-choice questions. Each question
presented novel clinical data with the same layout as within the ex-
periment (i.e., patient card) and participants were to indicate the
classification by selecting one of the five clinical case options. Un-
beknownst to the participants, there were four patients for each disease
type randomly distributed throughout the test.

2.3. Data acquisition and processing

Accuracy rates, card view times, and response option view times
were recorded using the RESPONSEPixx controller (VPixx, Vision
Science Solutions, Quebec, Canada). Behavioural measures were binned
as the first twenty (early) and last twenty (late) trials of each phase. For
each participant, behavioural analyses examined block accuracy rates,
card view times, and response option view times. Grand average be-
havioural data were created by averaging the results of all corre-
sponding participants.

EEG data were recorded from 64 electrodes which were mounted in
a fitted cap with a standard 10-10 layout (ActiCAP, Brainproducts
GmbH, Munich, Germany). Electrodes on the cap were initially refer-
enced to a common ground. On average, electrode impedances were
kept below 20 kQ. The EEG data were sampled at 500 Hz, amplified
(ActiCHamp, Revision 2, Brainproducts GmbH, Munich, Germany), and
filtered through an antialiasing low-pass filter of 8 kHz. To ensure
temporal accuracy of stimuli and data a DATAPixx processing box
(VPixx, Vision Science Solutions, Quebec, Canada) was used.

EEG data were processed as follows using Brain Vision Analyzer
software (Version 7.6, Brainproducts, GmbH, Munich, Germany). First,
excessively noisy or faulty electrodes were removed. The ongoing EEG
data were down sampled to 250 Hz, re-referenced to an average mas-
toid, and then filtered using a dual pass Butterworth filter with a
passband of 0.1 Hz to 30 Hz in addition to a 60 Hz notch filter.
Segments spanning 3000 ms - 1000 ms prior to feedback stimuli to
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2000 ms following feedback stimuli onset - were created to complement
an independent component analysis which was used to correct ocular
artifacts (Luck, 2014). Channels that were initially removed were then
interpolated using spherical splines. A re-segmentation of the data was
then conducted to yield 800 ms epochs ranging from 200 ms prior to
feedback stimuli to 600 ms following feedback onset. Following this,
each epoch was baseline corrected using the 200 ms of data prior to
feedback stimuli onset. Data were then re-segmented into two condi-
tions (correct, incorrect) and two time points (early, late). All wave-
forms were then processed through an artifact rejection algorithm with
a 10 pV/ms gradient and a 150 pV absolute difference criteria. For each
participant, condition and time point, ERP waveforms were created by
averaging the epoched data for each electrode.

The ERP component of interest was the reward positivity. This
frontal-central ERP component is defined as the maximal difference
between correct and incorrect feedback waveforms between 250 ms
and 350 ms following feedback stimulus onset at electrode FCz
(Holroyd and Krigolson, 2007; Miltner et al., 1997). For statistical
purposes, we quantified the reward positivity for each condition and
participant as the mean voltage = 25 ms of the peak difference in the
grand average waveforms (292 ms) at channel FCz. We chose this time
window and channel based on visual inspection of the data and pre-
vious literature (Holroyd and Coles, 2002; Holroyd and Krigolson,
2007; Krigolson et al., 2014; Schultz et al., 1997). Note, we only were
able to analyze the reward positivity difference (correct — incorrect) in
the initial stages of learning given the lack of error trials in later stages.
We also compared the correct ERP waveforms for the first twenty trials
of all experimental phases (early condition) to the correct ERP wave-
forms for the last twenty trials of all experimental phases (late condi-
tion) to gauge learning related changes in the amplitude of the reward
positivity. Although the reward positivity is generally measured as the
difference between correct and incorrect waveforms, the change in
amplitude of this component is theorized to be driven by a change in
the correct waveforms and not in the incorrect waveforms, thus al-
lowing us to measure the amplitude of the reward positivity by solely
focusing on the correct waveforms (Holroyd and McClure, 2015;
Holroyd and Yeung, 2012). The result of these analyses yielded average
correct and average incorrect conditional waveforms (early learning)
and two average correct waveforms (early condition, late condition).
For each average waveform, a grand average waveform was created by
averaging corresponding ERPs across all participants.

2.4. Data analysis

To confirm that reinforcement learning is an effective approach
when learning to diagnose liver and biliary disease types, and that the
reward positivity can be used to track learning in a medical context, the
following statistical approaches were reported on all behavioural and
neural measures of interest: 95% confidence intervals, null hypothesis
testing (t-tests with a = 0.05), and effect sizes (Cohen's d). All statistics
were conducted in R (version 3.3.0) using R Studio (version 0.99.902).

Behavioural data were analyzed to assess participants' ability to
diagnose liver and biliary disease types. The behavioural data of in-
terest were the block accuracy rates, the card view time, the response
option view time, and the post-test accuracy rates. For block accuracy
rates, card view time, and response option view time, data were binned
into early and late conditions. The early condition was defined as the
first twenty trials (first block) of all completed phases, while the late
condition was defined as the last twenty trials (last block) of all phases
completed. A paired samples t-test was conducted between the early
and late conditions of each behavioural measure. A single sample t-test
was conducted on the post-test accuracy comparing participants' rates
to chance (20%). EEG data were analyzed via two paired samples t-tests
that were used to compare the amplitude of the reward positivity be-
tween correct and incorrect trials and between stage of learning (early,
late).
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Table 1

Descriptive statistics for all behavioural and neural data comparing early and late con-
ditions. CI = confidence interval. Accuracy rates were determined as the averaged per-
centage of correct diagnostic decisions out of the 20 trials of the corresponding blocks.
Card view time refers to the averaged length of time participants viewed the patient card
in the corresponding blocks. Response view time refers to the averaged length of time
participants viewed the diagnostic options prior to finalizing their diagnosis for the
corresponding blocks. Correct waveform reflects the mean peak amplitude + 25ms
centered at 292 ms, where the reward positivity peak was maximal, at electrode FCz time-
locked to correct feedback onset of the corresponding blocks.

Early Late
Mean 95% CI Mean 95% CI
Min Max Min Max
Accuracy rates 80.14% 75.56% 84.73% 96.83% 95.74% 97.91%
Card view time 7.57s 6.75s 8.39s 4.58s 4.10s 5.07s
Response view time 4.66 s 4.43s 4.90s 3.67s 3.55s 3.80s
Correct waveform 7.53uV  5.71pvV 9.35uV  3.68uV  1.93uV 544 uv

3. Results

Participants completed the task in an average of 48 min [CI: 43 min
54 min] and 274 trials [CL: 229 trials 318 trials]. Descriptive statistics
can be found in Table 1 and statistical results can be found on Table 2.
Participants averaged 88% [83% 93%] on the post-test, well above
chance (20%). Furthermore, participants had higher accuracy rates,
shorter viewing times of the patient's cards, and shorter viewing times
of the response choices in the late condition compared to early condi-
tion (see Fig. 2). These results suggest that participants learned data
patterns that led to the correct diagnostic selection. Accompanying
these findings was concurrent neural evidence of learning as evidenced
by a reward positivity (see Fig. 3A). Further, the correct feedback wa-
veform of the reward positivity decreased in amplitude from the early
condition to the late condition (see Figs. 3B and 4). These data indicate
that reward positivity amplitude was sensitive to the degree of learning
throughout the task.

4. Discussion

Both our behavioural and neural data demonstrated that partici-
pants learned the presented material. Specifically, increases in accuracy
and decreases in response times from the early condition to the late
condition revealed participant improvement at diagnosing liver and
biliary disease types. Improvements in accuracy reflected that partici-
pants were able to utilize simple feedback as to whether or not they
made the correct decision to direct their exploration of the clinical
environment and learn the key diagnostic classification features
(Gershman and Niv, 2010; Niv et al., 2015; Wilson and Niv, 2012).
Ultimately, this led to participants becoming able to identify the ne-
cessary patterns within the physiological data that corresponded to
each disease type. Additionally, concomitant decreases in response
times indicated that participants were learning to more quickly navi-
gate the information presented to them and optimize their assessment
strategy to result in the correct decision. Further, we found that, after a
twenty-minute distractor task participants retained knowledge on a
post-hoc test of the presented clinical material (88% accuracy). Im-
portantly, the retention test is evidence of participant learning — a re-
latively stable improvement in performance over time (Skinner, 1958).

Here we provided further evidence that the reward positivity re-
flected a reward learning system in an experimental context that closely
mirrors a real world medical education environment. Indeed, an ana-
lysis of the difference between correct and incorrect feedback revealed
that early in learning a reward positivity was elicited. Perhaps more
importantly given our hypotheses, we also demonstrated that learning
related changes in the amplitude of the reward positivity appeared to
reflect an underlying learning process. Specifically, the correct aspect of
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Table 2

Descriptive and inferential statistics for all behavioural and neural data. CI = confidence interval. Post-test accuracy refers to the difference between participants' percentage of correct
diagnoses out of 20 on a pen and paper test and chance (20%). Accuracy rates were determined as the difference between the averaged percentage of correct diagnostic decisions out of
the 20 trials of the early and late conditions (late — early). Card view time refers to the difference between the averaged length of time participants viewed the patient card of the early and
late conditions (late — early). Response view time refers to the difference between the averaged length of time participants viewed the diagnostic options prior to finalizing their diagnosis
across the early and late conditions (late — early). Reward positivity reflects the difference in mean amplitude = 25 ms centered at 292 ms, where the reward positivity peak was
maximal, at electrode FCz between correct and incorrect feedback. Correct waveform corresponds to the difference of the mean peak amplitude + 25 ms centered at 292 ms at electrode
FCz time-locked to correct feedback onset of the early and late conditions (late — early).

Mean difference 95% CI t-Value p-Value Cohen's d
Min Max
Post-test accuracy 68% 63% 73% 27.43 < 0.0001 5.38
Accuracy rates 16.68% 12.44% 20.93% 8.09 < 0.0001 1.59
Card View time —2.99s —3.59s —2.38s -10.15 < 0.0001 —1.99
Response view time —0.99s —-1.16s —-0.82s —11.83 < 0.0001 —-2.32
Reward positivity 5.53 uv 2.37 pv 8.68 uv 3.61 0.0013 0.71
Correct waveform —3.85uvV —5.30 uv —2.40 uv —5.46 < 0.0001 —-1.07
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around the peak latency, 292 ms, of the corresponding waveforms with 95% confidence intervals.

the reward positivity was reduced in amplitude for the late condition data we observed a reward positivity early in learning). However, after
relative to the early condition, paralleling the aforementioned beha- participants learned to classify diagnostic disease types their expecta-
vioural changes that we observed. As the magnitude of the positive tions would be the same as their outcomes. Thus, reinforcement
deflection of the reward positivity is theorized to be proportional to the learning theory would predict that the amplitude of the prediction error
amplitude of reward prediction error signals reaching the ACC (Holroyd would be reduced. Supporting this, in our data we saw a related de-
and McClure, 2015), the reduction in component amplitude is sugges- crease in the amplitude of the reward positivity with learning. In other
tive that the neural system underlying this component was no longer words, our data suggest that the amplitude of the reward positivity is an
computing prediction errors. In other words, early in learning partici- index of degree of learning.

pants' expectations of outcomes were not precise and as such in a the- Our task also provided insight as to whether the reward positivity is
oretical framework a prediction error would be computed (i.e., in our involved in real-world learning, rather than being an artifact of simple
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experimental stimulus-response paradigms. This is an important con-
sideration because all studies exploring the change in reward positivity
amplitude across learning use artificial stimulus-response mappings.
For example, Krigolson et al. (2014) had participants determine which
of two coloured squares were rewarding. Although they showed that
participants could learn this, and that learning was reflected by the
reward positivity, this scenario is unlike anything we encounter in ev-
eryday life. As predicted, our findings are congruent with this and other
studies, supporting the account that the reward positivity reflects a
generic learning system responsible for feedback learning in all contexts
— confirming a long-standing assumption of the generalized function
underlying the reward positivity and the ACC (e.g., Holroyd and Coles,
2002). Further, this also elucidates to the fact that this associative
learning system continues to drive learning across simple and complex
material. With this knowledge, future educational interventions can
focus more heavily on reinforcement learning techniques, even when
regarding difficult material.

In sum, we presented evidence that a reinforcement learning para-
digm is effective when learning complex material. Further, we sup-
ported claims that the reward positivity reflects reward learning sys-
tems as its amplitude diminished with learning. Lastly, our paradigm
allowed us to generalize what is known about this component to real
world contexts. Thus, the reward positivity reflects a generic learning
system.
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