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Abstract

■ Our ability to make decisions is predicated upon our knowl-
edge of the outcomes of the actions available to us. Reinforce-
ment learning theory posits that actions followed by a reward
or punishment acquire value through the computation of pre-
diction errors—discrepancies between the predicted and the
actual reward. A multitude of neuroimaging studies have demon-
strated that rewards and punishments evoke neural responses
that appear to reflect reinforcement learning prediction errors
[e.g., Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W.
Learning to become an expert: Reinforcement learning and
the acquisition of perceptual expertise. Journal of Cognitive
Neuroscience, 21, 1833–1840, 2009; Bayer, H. M., & Glimcher,
P. W. Midbrain dopamine neurons encode a quantitative reward
prediction error signal. Neuron, 47, 129–141, 2005; OʼDoherty,
J. P. Reward representations and reward-related learning in the
human brain: Insights from neuroimaging. Current Opinion in
Neurobiology, 14, 769–776, 2004; Holroyd, C. B., & Coles,
M. G. H. The neural basis of human error processing: Reinforce-
ment learning, dopamine, and the error-related negativity.

Psychological Review, 109, 679–709, 2002]. Here, we used the
brain ERP technique to demonstrate that not only do rewards
elicit a neural response akin to a prediction error but also that
this signal rapidly diminished and propagated to the time of
choice presentation with learning. Specifically, in a simple,
learnable gambling task, we show that novel rewards elic-
ited a feedback error-related negativity that rapidly decreased
in amplitude with learning. Furthermore, we demonstrate the
existence of a reward positivity at choice presentation, a pre-
viously unreported ERP component that has a similar timing
and topography as the feedback error-related negativity that
increased in amplitude with learning. The pattern of results we
observed mirrored the output of a computational model that
we implemented to compute reward prediction errors and the
changes in amplitude of these prediction errors at the time
of choice presentation and reward delivery. Our results pro-
vide further support that the computations that underlie human
learning and decision-making follow reinforcement learning
principles. ■

INTRODUCTION

Everyday we are faced with a myriad of decisions—simple
decisions like what to eat or complex decisions like
whether or not we should get married. But how do we
actually decide what we want to do? Utilitarianism (Mill,
1879) suggests that we have an inherent desire to seek
out and maximize rewarding outcomes, and thus, we tend
to make decisions that maximize utility. For example,
consider the choice of career. Do we choose a career
doing something that we are passionate about—for
instance, academia? Or, do we pursue a career such as
medicine that would be more lucrative? Obviously, every-
one has their own opinion about the relative value of
these particular choices, but utilitarian theory suggests
that each of us makes a choice that we believe maximizes
utility. Indeed, our ability to decide what we want to
do with our lives or to make any other decision for that

matter is predicated upon our knowledge of the value of
the actions available to us (Bernoulli, 1713).

So what does the value of an action reflect and how
do we learn the value of an action? Reinforcement learn-
ing (RL) theory proposes that the value of an action is
a prediction of the subsequent reward or punishment
gained by selecting that action (Sutton & Barto, 1998;
Rescorla & Wagner, 1972). Rescorla and Wagner also
proposed that the value of an action is updated following
a decision that leads to a reward or punishment. For
example, imagine we are in a state Q with two choices—
A and B. Initially, the values for these choices will be
zero—we have no information about the outcome of
choosing A or B, and thus the prediction of reward (or
punishment) associated with each choice is zero. How-
ever, if we choose A and are then rewarded, we compute
a prediction error—the discrepancy between the actual
value of the reward and the predicted value of the re-
ward. Importantly, the prediction error is then used to
modify the value of choice A, such that over time, the
value of choice A comes to accurately reflect the reward1Dalhousie University, 2University of British Columbia
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gained by making this choice. In other words, in the initial
stages of learning one should observe prediction errors
when rewards or punishments are encountered, as there
will be discrepancies between the actual value of the re-
ward and the value of the action (i.e., the prediction of
reward: Rescorla and Wagner [1972] and Sutton and Barto
[1998]). With learning, however, the magnitude of the pre-
diction error computed at the time of reward delivery will
diminish as the predicted value of reward (i.e., the value of
the action) comes to approximate the actual reward value.

As the values of the actions available to us increase or
decrease with learning, the value of the choice state
where one can select potential actions also changes. Sim-
ply put, moving into a state that has actions with known
values means that one is in a position to select an action
that leads to a reward—or avoid an action that leads to
a punishment. During learning, the value of the choice
state is also changed by the reward prediction errors that
are used to modify the values of actions. Thus, the value
of the choice state also comes to reflect a prediction of
the reward (or punishment) that can be gained by select-
ing actions within that state. Recall the previous example
where we are in a state Q with two potential choices, A
and B. If we choose A and are rewarded, we increase
the value of the action, A, but we also increase the value
of the choice state Q. Subsequently, when we encounter
choice state Q after learning has occurred a prediction
error is computed as we will have moved from a state
with no value—the state before Q—into a state with
value—state Q. Computational RL theories such as the
method of temporal differences (Sutton & Barto, 1998)
take this into account and posit that prediction errors
are computed as the difference between the value and
rewards of the current state and the value of the previous
state. Consider another example—driving home from
work. The actual reward is getting home, but arriving
at an intersection close to home can be thought of as
rewarding as it means we are in a state where we can
select an action that will get us home. One can also
summarize this as follows: Prediction errors occurring
at the earliest indicator events are going to be better or
worse than expected (i.e., anytime an agent moves into a
state with greater or lesser value; Holroyd & Coles, 2002).
Early in learning prediction errors occur at the time of
reward delivery as the value of the choice state does
not accurately reflect the value of the subsequent reward
or punishment. However, after learning has occurred,
prediction errors occur when we move into a choice state
that has value from a prior state without value.

Studies in monkey measuring changes in the phasic
firing rate of dopaminergic neurons in the substansia
nigra pars compacta in classical conditioning experiments
provide empirical support for the predictions of RL theory.
Seminal work by Schultz, Dayan, and Montague (1997)
demonstrated that, when monkeys are initially given a
reward, there is an associated phasic increase in the firing
rate of dopaminergic neurons in the substansia nigra pars

compacta. However, Schultz and colleagues also observed
that when a reward was consistently paired with a pre-
dictive stimulus the phasic increase in dopamine firing
rate observed at the time of reward delivery diminished
over time and instead a phasic increase in dopamine firing
rate was observed shortly after the onset of the predictive
stimulus. RL theory specifically predicts this pattern of
results. First, a prediction error should be computed early
in learning for unexpected rewards as the value of the cue
state did not predict the value of the reward. Second, the
prediction error at the time of reward should diminish
with learning as the value of the cue state approaches
the value of the reward state—the difference between
these states becomes zero and thus there is no error in
prediction. Third, a prediction error should be observed
at cue onset after learning has occurred as the monkey
has moved from a state with no value—the state before
the cue—to a state with value—the cue state. In summary,
the pattern of changes in the dopaminergic response
to the predictive cue and the reward mirrored the pre-
dictions of Rescorla and Wagner—prediction errors at
the time of reward diminished and prediction errors at
stimulus presentation increased with learning.
Studies in human observing the neural response to

feedback have demonstrated a pattern of results similar
to the theoretical predictions of Rescorla and Wagner
(1972) and the results observed in monkey by Schultz
and colleagues (1997). Specifically, in a series of experi-
ments, Holroyd and colleagues (Holroyd, Pakzad-Vaezi, &
Krigolson, 2008; Holroyd & Krigolson, 2007; Holroyd &
Coles, 2002) have demonstrated that the amplitude of
the feedback error-related negativity (fERN), a component
of the human brain ERP, is sensitive to reward expectancy
and further, that it only occurs in situations when par-
ticipants must rely on feedback to determine response
outcome. In other words, a fERN is only observed when
one moves from a state with no value into a state with
either positive or negative value. Extending this, Krigolson,
Pierce, Holroyd, and Tanaka (2009) found that the magni-
tude of the fERN at the time of reward delivery diminished
with learning—a result that mirrored the aforementioned
predictions and results. Unifying a large body of empirical
work, Holroyd and Coles (2002) proposed a comprehen-
sive theory that suggested that the fERN reflects the impact
of a dopaminergic prediction error signal sent by reward
evaluation units within BG (OʼDoherty et al., 2004) to
response selection processes in ACC (Holroyd, Yeung,
Coles, & Cohen, 2005; Holroyd & Coles, 2002) to facilitate
the optimization of behavior.
In the present experiment, we sought to demonstrate

a rapid shift in the occurrence of prediction errors from
feedback delivery to choice presentation with learning.
To accomplish this, we recorded ERP data while partici-
pants played a simple gambling game where they learned
which of two response options yielded a reward. In a
key manipulation, sets of distinct gambles were repeated
within each experimental block, making the gambling
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task completely deterministic and thus learnable. In this
manner, we sought to demonstrate that in the early stages
of learning a fERN would be elicited at the time of re-
ward delivery. However, in line with RL theory, we pre-
dicted that the amplitude of the fERN at the time of
reward delivery would diminish with learning. Further-
more, we also predicted that, with learning, we would
see an increase in an ERP response at the time of choice
presentation reflecting the occurrence of a prediction
error at this time. We hypothesized that the characteristics
of this signal would be similar to that of the fERN—that
it would be maximal 200–300 msec post-stimulus onset
with a medial-frontal scalp topography. Finally, to verify
that the pattern of our ERP results mirrored the predic-
tions of RL theory, we implemented a computational
model that utilized a RL algorithm (cf., Sutton & Barto,
1998) to learn and perform the gambling task.

METHODS

Participants

Eighteen undergraduate students (8 men, 10 women;
aged 18–30 years) with no known neurological impair-
ments and with normal or corrected-to-normal vision par-
ticipated in the experiment. All of the participants were
volunteers who received extra credit in undergraduate
psychology courses at the University of British Columbia
for their participation and a financial performance-based
reward (see below). The participants provided informed
consent approved by Research Services at the University
of British Columbia, and the study was conducted in ac-
cordance with the ethical standards prescribed in the origi-
nal (1964) and subsequent revisions of the Declaration of
Helsinki.

Apparatus and Procedure

Participants played a simple gambling game while electro-
encephalographic data were recorded. On each trial of
the game, participants first viewed a fixation cross for 400–
600 msec. Following this, two uniquely colored squares
appeared, one on either side of the fixation cross. The
colors of the squares were picked randomly from a set of
24 distinct colors before each block, and no unique color
pair was used more than once. After 1000 msec, the fixa-
tion cross changed color from a dark to a lighter shade of
gray, an event that signaled the participant to select one
of the colored squares by depressing either the left or right
button of a standard computer USB gamepad. Subsequent
to the button press, the squares disappeared, leaving the
fixation cross on the screen for another 400–600msec. After
this interval, participants were provided with feedback—
either a “0,” “1,” or “2” presented centrally on screen for
1000 msec, indicating that they had won either 0, 1, or
2 cents. Following feedback presentation, the screen went
blank for 500 msec.

After the first gamble of an experimental block (gam-
ble “A”), participants were presented with a second
unique gamble (gamble “B”) that was distinguishable
from the gamble A via the colors of the two squares. Note
that the colors of the squares for the second gamble were
picked to ensure they were different and unique from
the first gamble. As with the gamble A, participants se-
lected a response for gamble B and then were informed
as to whether or not they won. Note that the outcomes
of gambles A and B were completely deterministic—in
other words, participants were able to use the initial
outcome of a gamble to learn the correct response for
subsequent gambles. More specifically, for each gamble
one outcome was always “0” cents and the other was
either “1” or “2” cents (50% probability of each). Further-
more, the mappings between square color, choice, and
gamble outcome remained the same throughout each
experimental block, thus making the gambles “learnable.”
From a theoretical perspective, a RL prediction error
would occur when the feedback was viewed for the first
presentations of gambles A and B as participants moved
from a state with no value, the choice state, to a state with
value, the reward state.

Following the initial two gambles, participants were
randomly presented with either gamble A or gamble B
again. Importantly, participants knew the correct response
for the presented gamble—assuming they learned from
the provided feedback—but they did not know which
gamble they would see. As such, according to RL theory,
a prediction error should occur upon viewing the choice
state for gamble A or gamble B a second time as partici-
pants moved from a state with no value, the state before
the choice, to a state with value, the known choice state.
Following the third gamble, participants completed three
more gambles randomly chosen as either gamble A or
gamble B for a total of six gambles (three trials of each
gamble) to complete an experimental block. In total, par-
ticipants completed 108 experimental blocks, each con-
taining two unique gambles repeated three times each as
outlined above. Payout schedules, square colors, and the
side of the correct response (left/right) were all randomly
counterbalanced across the experimental blocks. Following
each block, participants could rest for as long as they wished
before commencing another block. On average, participants
won just under $8 CDN playing the gambling game.

Data Acquisition

Accuracy (correct, incorrect) and the RT (msec) were
recorded for each trial by the experimental program as be-
havioral measures of performance. The EEG was recorded
from 40 electrode locations using ActiView software (Alpha-
retta, GA). The electrodesweremounted in a fitted capwith
a standard 10–20 layout and were referenced to a two elec-
trode feedback loop (common mode sense to driven right
leg). The vertical and horizontal electro-oculograms were
recorded from electrodes placed above and below the
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right eye and on the outer canthi of the left and right eyes,
respectively. Electrode offsets were kept below ±25 mV at
all times. The EEG data were sampled at 256 Hz and ampli-
fied with an Active Two system (Biosemi B.V., Amsterdam,
Netherlands).

Data Analysis

We calculated mean accuracy (%) and mean RT (msec)
for correct and error trials for each experimental condi-
tion and participant as measures of task performance.

The EEG analysis was done as follows. First, the EEG
data were filtered offline through a (0.1–25 Hz passband)
phase shift free Butterworth filter and rereferenced to an
averaged mastoid reference. Next, 800-msec epochs of
EEG data were extracted from the continuous EEG locked
to cue (when the two colored squares appeared) and
feedback stimulus onset (200 msec before the event to
600 msec after). Following this, the ocular artifacts in
each epoch were corrected using the algorithm described
by Gratton, Coles, and Donchin (1983), and each epoch
was baseline-corrected using the mean voltage for the
200 msec preceding feedback stimulus onset. Epochs were
then examined for artifacts and removed from the data
set if there was a change in voltage on any channel that
exceeded 35 μV between adjacent sampling points or a dif-
ference of more than 150 μV between the maxima and
minima of the epoch. On average, less than 10% of the
data were discarded per participant, with two participantsʼ
data being completely removed from further analysis due
an excessive number of artifacts (more than 80% of the
trials were lost). Note that we also analyzed the data in
the exact manner described here but without the ocular
correction. We did this to ensure that there the ocular
correction algorithm did not mask any cue or feedback

stimulus onset related blink activity. The results from this
analysis mirrored the results reported here, albeit with
more noise given the reduced number of trials going into
the averaged ERP waveforms.
ERP waveforms were created by averaging the EEG

epochs for each event of interest (cue, feedback), gamble
repetition (one, two, three), and each reward outcome
(win 0 cents, win 1 cent, win 2 cents) for each participant.
Observation of the grand averaged waveforms (see Fig-
ures 1 and 2) led to a quantification of the fERN as the
mean voltage 225–275 msec following the onset of the
feedback stimulus. We focused our analysis on channel
FCz given previous work (Krigolson et al., 2009; Krigolson,
Holroyd, Van Gyn, & Heath, 2008; Holroyd et al., 2008;
Holroyd&Krigolson, 2007; Holroyd, Yeung, Coles, & Cohen,
2005) and an examination of the fERN topographies that
supported our decision (see Figures 1 and 2). We also
decided to examine the P300 evoked by the presentation
of the feedback stimulus and quantified this component
as the mean voltage 300–450 msec post-stimulus onset.
Finally, we were interested in the neural response to the
presentation of the gambling cue (i.e., the colored
squares). An examination of the grand averaged waveforms
confirmed our hypotheses, and we observed a difference
in the ERP waveforms consistent with accounts of the fERN,
albeit a bit later. As such, we quantified this cue locked
reward response as the mean voltage 290–340 msec post-
cue onset. Note that at this point there is no indication of
the outcome of the gamble, so we were only able to
quantify this component with regard to gamble repetition
(one, two, three) and not reward outcome.
All analyses were done with EEGLAB (Delorme &

Makeig, 2004) and custom code written in the Matlab
(MathWorks, Natick, MA) programming environment.
Repeated-measures ANOVA and paired samples t tests

Figure 1. (A) Grand averaged
ERP waveforms averaged to
the time of reward delivery
for Trial 1 of the gambling
task. (B) The topography of
the peak difference between
Reward 1 and Reward 0
outcomes in the fERN time
range. (C) The topography
of the peak difference
between Reward 2 and
Reward 0 outcomes in the
fERN time range.
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were used to examine all effects of interest. An alpha level
of .05 was assumed for all statistical tests; only significant
statistical effects are reported. All error measures reflect
95% within-participant confidence intervals (Masson &
Loftus, 2003; Loftus & Masson, 1994).
To verify whether our ERP and behavioral results reflect

the output of a RL system, we implemented a computa-
tional model based on previous work (Chase, Swainson,
Durham, Benham, & Cools, 2010; Holroyd & Coles, 2002,
2008; Cohen & Ranganath, 2007). Our model learned to
play the same gambling game as our human participants
by computing a prediction error following reward delivery.
The prediction error (δ) was then used to update weights
(w1 and w2) representing the values of each of the re-
sponse options. Initially random numbers between 0 and
0.01 (Holroyd & Coles, 2008), these weights determined
the probability that an action was selected based on a
softmax decision function (Sutton & Barto, 1998):

Pðaction i is selectedÞ ¼ e
w1
τ

e
w2
τ þ e

w2
τ

Here, τ represents temperature, a model parameter that
determines the degree to which lower-weighted options
are selected. For example, a high temperature makes all
options equally likely, whereas a low temperature biases
the resulting probabilities toward the higher-weighted
option (Sutton & Barto, 1998). Following feedback, a
prediction error was calculated by comparing the actual
reward (R) to the predicted reward (the weight of the
action that was taken): δ = R − wi. As in the actual task,
we used positive reward values of 1 and 2; however, to
match the performance of our participants, it was neces-
sary to use negative reward values for zero reward out-
comes. We chose to use the negative of the win value
for a particular gamble: −1 or −2, if the alternative re-
ward (1 or 2) was known, and −1.5 if it was not (i.e.,
for losses in the first trial). Following the prediction
error computation, the weight (value) of the selected
action was updated according to the following learning
rule: wi = wi + ηδ. Here, η is another model parameter
called the learning rate, which determines the degree to
which the value of a particular action is updated by the
prediction error.

Figure 2. (A) Grand averaged ERP waveforms averaged to the time of choice presentation for Reward 1 outcomes for Trials 1, 2, and 3. (B) Grand
averaged ERP waveforms averaged to feedback onset for Reward 1 outcomes for Trials 1, 2, and 3. (C) The topography of the peak difference
between Trial 3 and Trial 1 Reward 1 outcomes for (top) choice presentation and (bottom) reward delivery. (D, E, F) The same plots as A, B, C,
except for Reward 2 outcomes.
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RESULTS

Behavioral Data

An analysis of participantsʼ accuracy revealed an effect for
Trial, F(2, 51) = 205.55, p < .001, that demonstrated
accuracy increased from Trial 1 (50.3%) to Trial 2 (92.3%),
t(17) = 17.48, p< .001, but did not differ between Trials 2
and 3 (93.1%), t(17) = 0.94, p > .050. Examination of our
RT data showed that RT did not differ on Trial 1 between
reward and no reward trials, F(2, 51) = 0.03, p = .969
(No Reward: 620 msec, Reward 1: 644 msec, Reward 2:
630 msec [SE = 9 msec]). However, RT did decrease be-
tween the first and second trials in a sequence (637 msec
vs. 491 msec, SE = 9 msec, t(35) = 5.55, p < .001), but
not between the second and third trials in a sequence
(491 msec vs. 493 msec, SE = 9 msec), t(35) = 0.37, p =
.072. To ensure the task was not “learnable” between
blocks, we also analyzed our accuracy and RT data to
see if there was a “block” effect over the time course of
the experiment. The results of these ANOVAs revealed
that there were no differences in Accuracy or RT between
experimental blocks ( ps > .500).

Electroencephalographic Data

Feedback Presentation: The Feedback
Error-related Negativity

Our analysis of the ERP waveforms averaged to feedback
presentation in the fERN time range (200–300 msec) for
the first trial of each sequence revealed that fERN ampli-
tude differed between No Reward, Reward 1, and Reward
2 trials, F(2, 51) = 5.04, p = .010. Specifically, we found
that fERN amplitude scaled with increasing reward mag-
nitude—the fERN was more positive for Reward 1 (6.53 ±
1.09 μV) than for No Reward trials (4.23± 1.09 μV), t(17)=
4.22, p < .001, and subsequently was more positive for
Reward 2 (9.15 ± 1.09 μV) than for Reward 1 trials,
t(17) = 3.61, p = .002.

Furthermore, we sought to see the change in the fERN
amplitude with learning, in other words, how the ampli-
tude of the component changed between Trials 1, 2, and
3 and how that interacted with reward magnitude. Here,
we observed a main effect for Trial independent of reward
magnitude, the fERN for Reward 1 and Reward 2 trials
decreased across trials, F(2, 102) = 22.67, p < .001. Spe-
cifically, the fERN was larger on Trial 1 (7.84 ± 0.85 μV)
than on Trial 2 (3.13 ± 0.85 μV), t(35) = 7.04, p < .001,
but the amplitude of the fERN on Trial 2 did not differ from
the amplitude of the fERN on Trial 3 (2.71 ± 0.85 μV),
t(35) = 1.36, p = .183. It is also worth noting that we
observed a main effect for Reward Magnitude, with the
fERN for Reward 2 trials (5.41 ± 0.85 μV) being larger than
the fERN for Reward 1 trials (3.71 ± 0.85 μV), F(1, 102) =
6.11, p = .020.

Given the somewhat unusual nature of the feedback
averaged waveforms, we also conducted a wavelet analysis
on these data to confirm our ERP results. The results of

this analysis demonstrated that frontal midline theta at
electrode FCz between 200 and 300 msec—the location,
time, and frequency band associated with reward evalua-
tion within medial frontal cortex (e.g., Hajihosseini &
Holroyd, 2013; Christie & Tata, 2009)—mirrored our ERP
results, F(2, 34) = 12.22, p< .001. Specifically, theta power
at electrode FCz between 200 and 300 msec post-feedback
onset increased between the No Reward and Reward 1
conditions and again between the Reward 1 and Reward 2
conditions ( ps < .05). We note here that we did not ob-
serve any change in the latency of the theta activity with
learning or differences in theta activity in different time
windows.

Feedback Presentation: The P300

Here, we observed a pattern of results similar to that
observed for the fERN with regard to the effect of trial
order—the P300 diminished between subsequent trials,
F(2, 102) = 35.08, p < .001. Specifically, we found that
the P300 decreased in amplitude from Trial 1 (13.36 ±
1.21 μV) to Trial 2 (4.99 ± 1.21 μV), t(35) = 7.89, p <
.001, and then again between Trials 2 and 3 (3.78 ±
1.21 μV), t(35) = 3.19, p= .003. Interestingly, and counter
to previous work (i.e., Wu & Zhou, 2009; Bellebaum &
Daum, 2008; Yeung & Sanfey, 2004), we did not observe
the amplitude of the P300 scaling to reward magnitude,
F(1, 102) = 2.66, p = .111.

Prediction Error Propagation: A fERN at
Stimulus Onset?

Recall that we predicted, in line with RL theory, that we
would see an ERP response similar to the fERN in response
to the onset of the gambling cue with learning. In other
words, after participants learned the correct gambling re-
sponse following feedback on Trial 1, we predicted we
would observe a prediction error (i.e., a fERN) to the onset
of the gambling cue itself. Interestingly, and in line with
our hypothesis, we observed an increased medial-frontal
positivity on Trials 2 and 3 of each gamble relative to
Trial 1 that had a scalp topography and timing consistent
with previous accounts of the fERN. Specifically, we ob-
served an effect for trial order, F(2, 102) = 8.83, p <
.001, that indicated that the medial-frontal positivity we
observed scaled to trial order independent of feedback
valence and reward magnitude. Specifically, we found
that the magnitude of this positivity was greater on Trial 2
(0.10 ± 0.66 μV) than on Trial 1 (−1.70 ± 0.66 μV: t(35) =
3.69, p < .001), but did not differ between Trials 2 and
3 (0.13 ± 0.66 μV: t(35) = 0.27, p = .792).

RL Model

Wemodeled responses from 18 participants, with each sim-
ulated participant completing 108 blocks of the same gam-
bling task as our human participants. Our computational
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model was tuned to match the human behavioral per-
formance by adjusting both the learning rate and the
temperature and observing the resulting output. Our final
model had a learning rate of η = 0.95 and a temperature
that varied randomly and uniformly from τ = 0.1 to τ =
0.3. A unique τ was chosen for each participant to create
variability in the model output. Gaussian noise was added
to each prediction error calculation to simulate variability
because of neural noise. Model accuracy closely matched
human performance (Trial 1: 48.9% ± 0.8%; Trial 2:
90.6% ± 0.1%; Trial 3: 94.3% ± 0.9%). For Reward 1, the
model produced prediction errors that shifted from feed-
back (Trial 1: 0.97 ± 0.07; Trial 2: 0.07 ± 0.03; Trial 3:
0.01 ± 0.03) to cue (Trial 1: 0.01 ± 0.03; Trial 2: 0.99 ±
0.03; Trial 3: 0.98 ± 0.02). Similar results were observed
for Reward 1 for both feedback (Trial 1: 1.97 ± 0.02; Trial 2:
0.16± 0.03; Trial 3:−0.01± 0.03)) and cue (Trial 1:−0.01±
0.02; Trial 2: 1.84 ± 0.04; Trial 3: 2.03 ± 0.03).

Relationship between Human and Model
Prediction Errors

To ensure that the changes in the timing of the reward
prediction error signal observed in ERP waveforms fol-
lowed the predictions of our computational model, we
conducted a regression analysis. First, we standardized
the cue and feedback ERP peaks (i.e., the medial-frontal
cue and reward positivities) for Reward 1 and Reward 2
trials to compensate for between- and within-subject varia-
bility. Next, we computed the difference between the stan-
dardized medial-frontal response at the time of choice
presentation and the standardized medial-frontal response
at the time of feedback delivery for both reward levels for
each trial for each participant. The logic here was simple,
on Trial 1 this difference should be negative as the stan-
dardized reward positivity following feedback onset should
be greater than the reward positivity following choice pre-
sentation. Conversely, for Trials 2 and 3, this difference
should be positive as the standardized response should
be greater at the time of stimulus cue onset than at feed-
back delivery. We repeated this process for the prediction
errors computed by our model at choice presentation and
feedback delivery for each trial for each simulated partici-
pant. Finally, we ran a regression between the human and
model data and found a strong relationship, r = 0.473,
p < .001. In other words, a statistical confirmation that
the pattern of results observed in the ERP data mirrored
the output of our computational model (see Figure 4).

DISCUSSION

In the present experiment we provide novel ERP evidence
demonstrating that actions rapidly acquire value with learn-
ing. Specifically, our results demonstrate that participants
(a) processed novel rewards and punishments, (b) the
neural response at the time of reward diminished with
learning, and importantly (c) there was a concomitant

increase in a novel neural response at choice presentation,
before action selection, that we propose reflects an RL
prediction error. Together, these data provide strong evi-
dence that the computations made by a neural learning
system within medial-frontal cortex (Holroyd & Coles,
2002) follow RL principles.

In line with a large body of existing research, an analysis
of the neural response to reward delivery on Trial 1 of the
gambling task revealed an ERP component with a timing
and scalp topography consistent with previous accounts
of the fERN (Krigolson et al., 2009; Holroyd & Krigolson,
2007; Hajcak, Moser, Yeung, & Simons, 2005; Yeung &
Sanfey, 2004; Gehring & Willoughby, 2002; Miltner, Braun,
& Coles, 1997). Furthermore, the feedback-averaged
waveforms for Trial 1 bore a similar resemblance to the
results of Ferdinand, Mecklinger, Kray, and Gehring
(2012)—with particular similarities seen between the
P200–N200–P300 complex in both studies. Recall that the
fERN has been proposed to reflect an RL prediction error
(Holroyd & Coles, 2002), and supporting that contention
here we saw the component elicited by novel feedback.
Previous accounts of the fERN have suggested that it re-
flects a binary judgment of task outcomes and thus does
not scale to reward magnitude (Hajcak, Moser, Holroyd,
& Simons, 2006). However, here we show that the fERN
scaled to reward magnitude—the component scaled line-
arly between Reward 0, Reward 1, and Reward 2 trials—a
result in line with studies in monkey demonstrating that
the amplitude of dopaminergic responses to reward deliv-
ery scale to reward magnitude (Tobler, Fiorillo, & Schultz,
2005). Furthermore, studies using the ERP technique
have shown that the fERN scales to reward expectancy,
and this is what we propose drives the effect observed
here. Recall that participants were aware that they could
either win 1 or 2 cents. As such, a reduced fERN was elic-
ited when 1 cent was won as participants were expecting
a 2-cent reward—a possibility in line with previous work
that has shown a similar effect (Wu & Zhou, 2009).

Furthermore, in the present experiment, we did not see
the P300 scale to reward magnitude as in some previous
studies (e.g., Yeung & Sanfey, 2004). However, more
recent research suggests that the P300 is not sensitive to
reward magnitude but instead is sensitive to the riskiness
of a gamble (Oberg, Christie, & Tata, 2011; Christie & Tata,
2009). Our results are in line with these more recent re-
ports as there was no manipulation of riskiness in this
study. Alternatively, if the P300 does indeed scale to reward
magnitude (Christie et al., Oberg et al., notwithstanding),
the lack of the effect observed here may be because re-
ward magnitude was encoded by an earlier process (i.e.,
the fERN). Thus, the process underlying the P300 did not
encode this information in our experiment. Indeed, recent
work has shown that the timing of the fERN is sensitive
to cognitive load—the component occurs later on high
cognitive load trials (Krigolson, Heinekey, Kent, & Handy,
2012)—thus, it is not unreasonable to assume that the
timing of reward processing may vary from experiment
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to experiment because of task complexity or other fac-
tors. It is worth noting that we did not have a sufficient
number of Reward 0 outcomes on Trials 2 and 3 to analyze
the fERN at these instances.

Our results also demonstrated that the amplitude of
the positive component of the fERN diminished in am-
plitude with learning—a result in line with the pre-
dictions of RL theory and mirroring the output of our
computational model that predicted a similar pattern of
results for the amplitude of predictions errors calculated
at the time of reward delivery (see Figures 3 and 4). Re-

call that a prediction error occurs when there is a dis-
crepancy between the actual and predicted values of a
reward. In this study, on Trial 1 participants were un-
aware which action would result in a reward—pressing
the left or the right gamepad button. The value of each
action would have initially been zero when a reward was
first won; thus, a prediction error would be computed by
the reward system. In line with this, as mentioned above,
we observed a fERN on Trial 1 of the gambling task when
feedback was novel. However, given the ease of the task,
it stands to reason that the learning rate would be high—
a contention supported by the rapid improvement in re-
sponse accuracy between Trials 1 and 2 and by our com-
putational model, which needed a learning rate of 0.95 to
mirror participantsʼ accuracy results. With a high learn-
ing rate, the value of the correct action would increase
substantially between Trials 1 and 2. As a result of this
rapid increment in value, one would expect a small fERN
on Trials 2 and 3—and this is what we observed in our
ERP data. It is worth noting that our results are similar
to those of Krigolson et al. (2009), who also found that
the amplitude of the fERN diminished with learning for
participants who acquired a measure of perceptual ex-
pertise though a trial and error shaping process. Finally,
what about No Reward outcomes on Trial 1? The same
logic applies as the task was completely deterministic—
if the outcome of response selection on Trial 1 did not
result in a reward, then participants knew the other ac-
tion would lead to a reward, and thus, it would make

Figure 3. Mean fERN
amplitudes (top) for choice
presentation and reward
delivery for Reward 1 and
Reward 2 outcomes. Mean
prediction errors (bottom)
calculated by the computational
model of the task. Note the
similarity between the outputs
with the exception that the
fERN at choice presentation
did not seem to scale to
value magnitude.

Figure 4. Standardized differences between cue and reward prediction
errors for human participants plotted against matched simulation
participants. The relationship suggests that the pattern of human
results mirrored the predictions of our computational model.
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sense to increase the value of the action that was not
chosen.
One may wonder why the positive component of the

fERN is of interest here given that we are discussing a
fERN. Indeed, the fERN is typically associated with the
negative waveform. However, recent research suggests
that perhaps what we are observing in feedback evaluation
tasks is a correct-related positivity (Holroyd, Pakzad-Vaezi,
& Krigolson, 2008). Our results support this hypothesis,
and further, bring the literature in line with studies in
monkey that demonstrate phasic dopaminergic activity
carries positive but not negative prediction errors (Waelti,
Dickinson, & Schultz, 2001). In other words, what our
results suggest—at least in line with an interpretation of
the Holroyd and Coles (2002) theory—is that a phasic
increase in dopamine at the time of reward feedback
drives a reward positivity in the fERN time range early
in learning and at the time of choice presentation after
learning has occurred. It is worth noting that other studies
have also reported that unexpected positive feedback
resulted in a positive deflection of the N200 component,
albeit with a different interpretation of the result (e.g.,
Ferdinand et al., 2012).
Interestingly, we also observed an ERP component at

the time of choice presentation with a timing and scalp
topography consistent with the fERN. Furthermore, the
amplitude of this component increased with learning
concomitantly with the decrease in the fERN at the time
of reward delivery—a result that mirrored the predictions
of formal RL theory and the output of our computational
model (see Figures 3 and 4). Typically, the fERN is de-
fined as the difference between win and loss trials in a
gambling task. However, at the time of choice presenta-
tion in the present experiment, there was no difference
between win and loss trials, that is, a response had yet to
be selected and thus the outcome was unknown even if
the values of the two response options were known.
Furthermore, given our task structure, participants were
not able to predetermine their response until they viewed
which of the two gambles they were asked to play. As
such, the change we observed is novel in that it is not a
fERN and we can only speculate as to what cognitive pro-
cess is reflected by the increase in component amplitude
that we observed. With that said, we propose the increase
in component amplitude reflects the processing of a
prediction error brought about by the learning-driven
increase in value of the action selection state for two prin-
ciple reasons. One, the timing and topography of the
component we observed are consistent with the fERN.
Two, an examination of Figures 2, 3, and 4 reveals that
the changes in the ERP waveforms associated with the
onset of choice presentation and reward delivery almost
exactly mirror the output of our computational model.
Our logic is speculative, and there are potentially other
explanations for our findings—more research is needed
to clarify the processes underlying the cue-evoked ERP
component observed here. It is worth noting that the

component evoked by choice presentation did not scale
to reward value—a result that differs from the predic-
tions of formal RL theory. Again, more research is needed
to clarify why this is—but it is perhaps related to the
contention by Hajcak et al. (2006), proposing that the
fERN reflects a binary evaluation of the potentials reward
outcomes—in this case a binary evaluation that a reward
may be attained by selecting the correct response.

In conclusion, our results provide novel evidence that
the fERN component of the human brain ERP is the scalp
signature of the impact of RL prediction error signals
sent from the BG to the ACC as posited by Holroyd and
Coles (2002). Furthermore, our data provide the first ERP
evidence that choice states acquire value with learning
and that these increases in value follow the computations
predicted by RL theory. Importantly, as actions acquire
value with learning, we gain the ability to make effective
decisions, and thus, we can follow our inherent desire to
maximize utility (Mill, 1879).
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