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Abstract
Converging evidence suggests that reinforcement learning (RL) signals exist within the human brain and that they play a role in
the modification of behaviour. According to RL theory, prediction errors are used to update values associated with actions and/or
predictive cues, thus facilitate decision-making. For example, the reward positivity—a feedback-sensitive component of the
event-related brain potential (ERP)—is thought to index an RL prediction error. An unresolved question, however, is whether or
not action is required to elicit a reward positivity. Reinforcement learning theory would predict that the reward positivity should
diminish or disappear in the absence of action, but evidence for this claim is conflicting. To investigate the impact of cue, choice,
and action on the amplitude of the reward positivity, we altered a two-armed bandit task by systematically removing these factors.
The reward positivity was greatly reduced or absent in the altered versions of the task. This result highlights the key role of
agency in producing learning signals, such as the reward positivity.
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Importance of agency in human reward
processing

Reinforcement learning (RL) describes how we learn to do the
right thing at the right time. More formally, RL is a computa-
tional theory that describes how an agent, or decision-maker,
learns to maximize its rewards by interacting with the envi-
ronment (Sutton & Barto, 1998). Rewarded actions are more
likely to be repeated, and punished actions are less likely to be
repeated (Thorndike, 1911/2017). In particular, actions are
selected via a policy, linking scenarios (states) to action like-
lihoods. Learning occurs when the policy is updated following
feedback. Neuroimaging evidence suggests that RL algo-
rithms are implemented in the human brain (O’Doherty,
Cockburn, & Pauli, 2017).

One possible neural RL signal is the reward positivity, a
feedback-sensitive component of the human event-related po-
tential (ERP). The reward positivity, also called the feedback-
related negativity (FRN; see Proudfit, 2015), is a positive ERP

deflection that is sensitive to RL prediction errors (Holroyd &
Coles, 2002; Krigolson, 2017; Sambrook & Goslin, 2015;
Walsh & Anderson, 2012). Whenever feedback occurs an
RL prediction error is computed reflecting the difference in
value between the expected and the actual outcome. Thus, an
unexpected outcome elicits a larger reward positivity than an
expected outcome, and a large-magnitude outcome elicits a
larger reward positivity than a small-magnitude outcome
(see Walsh and Anderson, 2012, for a list of contradictory
evidence). RL prediction errors are then used to update the
policy, increasing or decreasing the value of selecting certain
actions in a given state.1

The degree to which the reward positivity reflects an RL
prediction error has been studied and debated (Walsh &
Anderson, 2012). One aspect of this debate relates to the role
of action. Usually, an agent’s own action initiates a learning
event (i.e., cue → choice → action → outcome → policy
update). In other words, the reward positivity and learning
should take place when individuals have agency (control over
actions and their outcomes: Haggard, 2017). However,
humans and other animals are able to learn by observing the
consequences of others’ actions (observational learning:
Bellebaum, Kobza, Thiele, & Daum, 2010), in the absence

1 This describesmodel-free, as opposed tomodel-based learning (Daw, Niv, &
Dayan, 2005). Although we focused here on the former, electroencephalogra-
phy (EEG) has the potential to reveal the roles of both systems (Collins &
Frank, 2018).
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of action altogether (e.g., classical conditioning: Pavlov,
1927/2010; Rescorla & Wagner, 1972), and from counterfac-
tual outcomes (Fischer & Ullsperger, 2013). Strictly speaking,
observational learning and classical conditioning lie outside
the scope of RL, because they lack self-initiated actions; how-
ever, these examples illustrate the diverse range of conditions
under which learning takes place (and the possibility of mul-
tiple learning systems in the brain). Even within the realm of
RL, self-initiated actions may differ in their sense of agency.
For example, selecting one of two possible snacks involves
more agency (or outcome control) than flipping a coin.

Early experiments on the importance of agency on the re-
ward positivity have been inconclusive. For instance, Martin
and Potts (2011) found that removing agency from a response
(i.e., having the computer respond instead of the participant)
obliterated the reward positivity. However, in prior work by
Yeung, Holroyd, and Cohen (2005) participants showed re-
duced (but still present) reward positivities when their actions
were perceived to have no impact on outcomes (also see
Mühlberger, Angus, Jonas, Harmon-Jones, & Harmon-
Jones, 2017). Furthermore, and in contrast to Martin and
Potts (2011), Yeung et al. (2005) observed a small but signif-
icant reward positivity in the absence of action (i.e., when the
computer initiated the trial; see Donkers, Nieuwenhuis, & van
Boxtel, 2005, for a similar result).

These previous findings can be summarized as follows: the
reward positivity is reduced in the absence of agency and is
further reduced (or absent) in the absence of action. If the
reward positivity reflects an RL signal, why does it still occur
in the absence of agency and in the absence of action, at least
some of time? Yeung et al. (2005) offered the following ex-
planation: the reward positivity is not only tied to learning
about actions but also to learning about reward contingencies
in the world (classical conditioning). Thus, expectations may
be possible even in the absence of agency and action; rewards
preceded only by predictive cues may still elicit a reward
positivity (Donkers, Nieuwenhuis, & van Boxtel, 2005).
Interestingly, predictive cues themselves may elicit a reward
positivity, further suggesting that the reward positivity is not
solely related to learning about choices and actions (Dunning
&Hajcak, 2007; Holroyd, Krigolson, & Lee, 2011; Krigolson,
Hassall, & Handy, 2013; Krigolson & Holroyd, 2007).
Indeed, if the reward positivity reflects a more general predic-
tion error signal (as opposed to an action-contingent RL sig-
nal), then it should still be present in the absence of choice and
action, although perhaps diminished for other reasons. It re-
mains to be seen whether the reward positivity would still be
present in the absence of choice, action, and predictive cues.

Consider two casino games: roulette and slots (slot ma-
chines). Both are games of chance involving action, but rou-
lette also has choices: players choose the bet amounts and
predicted outcomes (e.g., “red” or “even”). In contrast, slot
machines offer actions (insert coin, pull arm) but no choices,

traditionally. Now imagine watching helplessly while some-
one else plays roulette with your money. You observe bets and
outcomes, but the choices and actions are not your own. This
scenario describes several previously used experimental tasks
designed to examine the neural response to feedback in the
absence of action (Donkers et al., 2005; Martin & Potts, 2011;
Yeung et al., 2005). To date, however, the effects of choice and
action on the reward positivity have yet to be compared within
the same individuals. Additionally, the role of predictive cues
in the generation of this neural signal is still somewhat unclear.
The scenario above, in which bets and outcomes can only be
observed, can be further modified by hiding the actual bets.
Would a normal reward positivity be generated in the absence
of these predictive cues (i.e., with outcomes only)?

In the present study, we sought to 1) reproduce earlier work
showing a reduction in the reward positivity in the absence of
choice and action, and 2) show further reduction or abolish-
ment of the reward positivity in the absence of predictive cues.
To address these hypotheses, we asked participants to play
four versions of a standard decision-making task (the doors
task: Proudfit, 2015). Across the tasks we manipulated agency
within four experimental conditions as follows: 1) cue →
choice → action → outcome, 2) cue → action → outcome,
3) cue → outcome, and 4) outcome. In line with previous
work, we predicted that the reward positivity would be present
in the first condition (cue→ choice→ action→ outcome) and
would be attenuated or abolished in the other three conditions.

Method

Participants

We tested 26 undergraduate students at the University of
Victoria. All participants had normal or corrected-to-normal
vision and no known neurological conditions. Participants
were recruited via the psychology department’s online recruit-
ment system and were compensated with credit in an under-
graduate psychology class and $8.40. EEG data for two par-
ticipants were excluded from the results (noisy ocular chan-
nels in one case, ground electrode failure in the other). Of the
remaining 24 participants, 13 were male and 2 were left-
handed (Mage = 21.54, SDage = 2.72). The study was approved
by the University of Victoria Human Research Ethics Board,
and all participants gave written informed consent.

Apparatus and Procedure

Participants were seated 60 cm in front of a 22-inch LCD
display (75 Hz, 2-ms response rate, 1,680 x 1x050 pixels,
LG W2242TQ-GF, Seoul, South Korea). Visual stimuli were
presented using the Psychophysics Toolbox Extension
(Brainard, 1997; Pelli, 1997) for MATLAB (Version 8.2,
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Mathworks, Natick, USA). Participants were given written
and verbal instructions to minimize head and eye movements
throughout the experiment.

Participants completed four versions of the doors task, a
computer-based guessing game (Proudfit, 2015). The order of
the games was counterbalanced across participants (24 order-
ings in total). There were 60 trials per game, for a total of 240
trials across all games. Participants were instructed, in writing,
that they would be playing four games for money, and that
they would be paid their total at the end of the experiment.
They were further informed that each win, indicated by the
appearance of an upward green arrow, would increase their
total by $0.14, and that each loss, indicated by a downward
red arrow, would decrease their total by $0.07. Unknown to
participants, outcomes were such that 50% of trials resulted in
a win and 50% of trials resulted in a loss, in randomized order.
Participants were told that detailed instructions would be pro-
vided prior to each game (see below). Finally, participants
were shown the contents of a cash box (several $5 bills, $2
coins, and $1 coins) to reassure them that the money was real.

Choice condition In the choice version of the doors task—the
standard version—two identical doors were presented in the
center of the display. The doors were separated by 1.1° of
visual angle, and each door subtended approximately 2.8°
by 5.5°. The doors remained on the display until one was
selected (mouse cursor moved over a door, and left mouse
button clicked). Following the mouse click, and prior to visual
feedback, a fixation cross (0.5° by 0.5°) appeared for 500 ms.
Visual feedback—a 0.9° by 2.2° green or red arrow—then
appeared for 2,000 ms. Another fixation cross appeared for
1,500ms, following by the words “Next outcome” for 500ms.
Participants were given the following written instructions: “'In
this game youwill see two doors. Select one of the doors using
the mouse. One door leads to a win (green arrow) and the
other to a loss (red arrow). Place your hand on the mouse
and press any key to begin.” In line with previous uses of
the doors task, the timing of stimulus presentation was not
jittered (Bress, Foti, Kotov, Klein, & Hajcak, 2013;
Mulligan, Flynn, & Hajcak, 2018). See Figure 1 for a sample
trial with timing details.

No-choice condition In the no-choice version of the doors
task, participants, upon the appearance of the doors, initiated
the trial by pressing the spacebar on a keyboard. After the
button press, the mouse cursor on the screen moved to near
the center of one of the doors, indicating the computer’s
choice. Door choice was random, and the cursor movement
time varied between 300 ms and 500 ms. All other timing and
stimuli were matched to the choice task. Participants were
given the following written instructions: “In this game you
will see two doors. After you press the spacebar, the computer
will select one of the doors using the mouse. One door leads to

a win (green arrow) and the other to a loss (red arrow). Place
your hand on the spacebar and press any key to begin.”

No-response condition This version was identical to the no-
choice task, except that the participant was not required to
initiate the trial with a button press. Rather, the computer
automatically made a selection 500-700 ms after the appear-
ance of the doors. Participants were given the following writ-
ten instructions: “In this game you will see two doors. Do not
press any buttons – the computer will automatically select one
of the doors using the mouse. One door leads to a win (green
arrow) and the other to a loss (red arrow). Press any key to
begin, then remove your hands from the keyboard.”

No-cue condition Here, no doors were presented, and each
trial began with the appearance of a fixation cross for 500
ms. The remainder of a trial was identical to the other versions
of the task. Participants were given the following written in-
structions: “In this game you will simply receive wins and
losses. Some trials will result in a win (green arrow), and some
trials will result in a loss (red arrow). Press any key to begin,
then remove your hands from the keyboard.”

Data Collection

Sixty-three channels of EEG data, referenced to channel AFz,
were recorded using Brain Vision Recorder (Version
1.21.0004, Brain Products GmbH, Munich, Germany).
Sixty-one electrodes were placed in a fitted cap according to
the 10-20 system. Additionally, two electrodes were affixed to
the mastoids (left and right). Conductive gel was applied to
ensure that electrode impedances were below 20 kΩ before
recording, and the EEG data were sampled at 500 Hz and
amplified (actiCHamp, Brain Products GmbH, Munich,
Germany).

Data Analysis

EEG preprocessing was done in BrainVision Analyzer
(Version 2.1.2, Brain Products GmbH, Munich, Germany).
EEG data were downsampled to 250 Hz and re-referenced to
the average of the mastoid channels. The original reference
(AFz) was recovered, and the mastoid channels were removed
from the data set, leaving 62 channels in total. The data were
then filtered using a phase shift-free Butterworth filter (0.1–
30 Hz pass band, 60-Hz notch). Ocular artifacts were
corrected by submitting all pre-feedback (fixation cross) and
feedback EEG data to independent component analysis (ICA).
Specifically, components associated with eye blinks were re-
moved from the continuous EEG (Jung et al., 2000). The ICA
algorithm was trained on EEG data around feedback events
(−1 to 2 s) but applied to the continuous data. The continuous
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ICA-corrected data were then segmented into 800 ms epochs:
200 ms before 600 ms following the onset of feedback stimuli.

The remainder of the analysis was done in MATLAB
(Version 9.4, Mathworks, Natick, USA) using a combination
of custom scripts and EEGLAB (Delorme & Makeig, 2004).
Epochs in which the voltage changed more than 10 μV per
sampling point or more than 150 μV across the entire epoch
were excluded from the analysis. On average, 8% of epochs
were excluded (SD = 5%). ERPs were created for each partic-
ipant by averaging the feedback-locked EEG data at each
channel, task (choice, no-choice, no-response, no-cue), and
feedback valence (win, loss). Grand average conditional
waveforms (mean of all participants’ win and loss ERPs) for
each task were computed for each channel. The reward posi-
tivity was then analyzed using the difference wave method.
For each task, a difference wave was computed for each par-
ticipant by subtracting the average loss waveform from the
average win waveform. A grand difference wave (mean of
all participants’ difference waves) was also computed for each
task and channel. Based on previous work (Holroyd & Coles,
2002; Miltner, Braun, & Coles, 1997), and an examination of
the grand average conditional waveforms and difference
waves (Figures 2 and 3), we defined the reward positivity
for each participant and task as the mean voltage from
252 ms to 288 ms post-feedback at electrode FCz.

In addition to measuring the reward positivity, we also
explored the possibility that the P300 component of the ERP
was impacted by task. This was done in order to replicate
results from Yeung et al. (2005), who reported larger P300s
for choice outcomes compared to no-choice outcomes. This is
interesting because the P300 has been linked to motivation, a
possible factor in our experiment (Kleih, Nijboer, Halder, &
Kübler, 2010). Here, we chose to examine the conditional

waveforms (win, loss), rather than the difference waveforms,
as described above. This was done for two reasons. First, this
was an exploratory analysis; we had no a priori P300 hypoth-
esis about the win-minus-loss difference waves. Second, we
recognized that although the reward positivity is best analyzed
using the difference-wave approach (Proudfit, 2015;
Krigolson, 2017), for the P300 an analysis of the conditional
waveforms may be more appropriate (Polich, 2007). We de-
fined the P300 as the mean voltage 300-412 ms post feedback
at electrode Pz (time range and location of maximal response,
for all conditions; see Polich, 2007). Thus, a P300 score was
computed for each task (choice, no-choice, no-response, no-
cue) and outcome (win, loss).

The existence of the reward positivity within each task was
determined using single-sample t tests (Krigolson 2017;
Krigolson & Holroyd, 2007). Additionally, we computed
Cohen’s d for each “existence test” as follows:

d ¼ M diff

sdiff

where Mdiff and sdiff are the mean and standard deviation
of the reward positivity scores (see Cumming, 2014). A
one-way repeated measures ANOVA was conducted to
determine the effect of task (choice, no-choice, no-re-
sponse, no-cue) on the reward positivity. The P300 was
subjected to a 4 (task: choice, no-choice, no-response, no-
cue) x 2 (outcome: win, loss) repeated-measures ANOVA.
Two different effect-size measures (partial eta squared and
generalized eta squared) were computed for each ANOVA
(Lakens, 2013, Olejnik & Algina, 2003). All error bars on
figures and error measures for mean reward positivity
scores reflect 95% confidence intervals (Loftus &
Masson, 1994; Masson & Loftus, 2003).

Fig. 1 Task stimuli and timing details. The choice/no-choice/no-response tasks differed in how a trial was initiated. The door stimuli were absent in the
no-cue task
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Results

Reward Positivity

There was a significant effect of task on reward positivity,
F(3,69) = 10.67, p < 0.001, ηp

2 = 0.32. A reward positivity

was observed in the choice task (t(23) = 6.16, p < 0.001,
Cohen’s d = 1.26. A small reward positivity was present in
both the no-choice task and no-response task according to our
existence test (no-choice: t(23) = 2.12, p = 0.046, Cohen’s d =
0.43; no-response: t(23) = 2.11, p = 0.046, Cohen’s d = 0.43),
but did not reach significance for the no-cue task (t(23) = 1.98,

Fig. 2 Feedback-locked grand average waveforms at electrode FCz, for each task

Fig. 3 Reward positivity results. Grand average difference waveforms (win minus loss) for each task (top left). Mean reward positivity scores for each
task, with 95% confidence intervals (bottom left). Scalp topography of the reward positivity for the choice condition (right)
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p = 0.059, Cohen’s d = 0.40). However, all three of our con-
ditions of interest (no-choice, no-response, and no-cue) had
comparable effect sizes. See Figure 3 and Table 1 for exact
reward positivity amplitudes.

P300

There was no interaction between task and outcome for the
P300, F(3,69) = 1.06, p = 0.37, ηg

2 = 0.002, ηp
2 = 0.044.

There was no main effect of feedback on the P300, F(1,23)
= 2.07, p = 0.16, ηg

2 = 0.006, ηp
2 = 0.082. There was a main

effect of task on P300 amplitude (enhanced for the choice task
relative to other tasks), F(3,69) = 54.40, p < 0.001, ηg

2 = 0.45,
ηp

2 = 0.70 (Figure 4).

Discussion

The results of the present study suggest that agency—the
sense of control over our actions and their outcomes—
affects the generation of a neural prediction error signal. In
other words, our data support the notion that prediction error
signals originating within medial-frontal cortex (Holroyd &
Coles, 2002) are indicative of a volitional RL agent trying to
learn the value of its actions.

In line with previous work, our analysis of the neural re-
sponse to feedback in a two-armed bandit task revealed an
ERP component with a timing and scalp topography consis-
tent with the reward positivity (Holroyd & Coles, 2002;
Yeung & Holroyd, 2005; Proudfit, 2015). According to the
RL account of the reward positivity, this signal reflects an RL
prediction error used to update action values (although other
accounts exist, e.g., the conflict monitoring hypothesis:
Yeung, Botvinick, & Cohen, 2004). The RL theory of the
reward positivity might therefore predict a key role of choice
in generating this neural signal. Consistent with this predic-
tion, previous studies have observed that outcomes beyond
our control elicit a reduced reward positivity compared to
outcomes following a choice (Mühlberger et al., 2017;
Yeung et al., 2005). We also observed a neural signal reminis-
cent of the reward positivity in the absence of choice, albeit
with a much smaller effect size compared to previous work
(Mühlberger et al., 2017). This signal was greatly reduced

compared with our control condition in which participants
made choices.

To manipulate agency, we not only removed choice but
also action. This was done in part to replicate previous work
(Yeung et al., 2005) but also because of evidence that our
sense of agency may work retrospectively. Actions that lead
to unintended outcomes can be reframed as intentional after
the fact (Johansson, Hall, Sikstrom, & Olsson, 2005). More
importantly, an action in the absence of a choice can still be
reinforced, thus engaging RL systems within the brain. We
therefore predicted that the removal of choice and action from
our task would result in a further reduction of the reward
positivity. Unlike previous literature, the removal of action
did not result in further reduction of the reward positivity
(Yeung et al., 2005). Similar effect sizes were seen in in both
our no-choice and no-response conditions, subordinating the
contribution of action to the reward positivity. Finally, because
RL systems are sensitive to cues, we introduced a no-cue
condition designed to push the RL theory of the reward pos-
itivity to its limits. As others have shown, presenting a predic-
tive cue sets up an expectation that impacts the reward posi-
tivity (Donkers et al., 2005; Krigolson et al., 2013). If the
doors in our task served as such cues, then their removal
should have resulted a reduced or absent reward positivity.
Once again, however, we observed an effect size in our no-
cue condition that was similar to our no-choice and no-
response conditions. Thus, a major factor in generating the
reward positivity (at least in this study) appears to be choice.

The observation that our sense of agency may work retro-
spectively is especially relevant to studies that contrast a
choice condition (e.g., picking a card) to a no-choice condition
in which participants respond only to initiate a random event
(e.g., spinning a roulette wheel). Problem gamblers, for exam-
ple, will mistakenly view random outcomes as under their
control (illusion of control: Langer, 1975).2 It is therefore pos-
sible that participants in previous “choice versus no-choice”
experiments might have experienced some sense of agency
when initiating random outcomes, accounting for the
moderate-sized reward positivities seen in those studies
(Mühlberger et al., 2017; Yeung et al., 2005). The current
experimental design, however, left little doubt as to when
participants were not in control; in two of our experimental
conditions (no-choice and no-response) participants were told
that the computer would select a door. This instruction was
emphasized by the animation, on each trial, of a mouse cursor
moving toward one of the doors. We speculate that these de-
sign details may have emphasized non-agency (the sense that
participants were not in control) within our no-choice and no-

Table 1 Reward positivity scores for each condition, in microvolts

M SD 95% CI Cohen’s d

Choice 5.72 4.55 [3.80, 7.65] 1.26

No-choice 1.49 3.43 [0.04, 2.93] 0.43

No-response 1.11 2.59 [0.02, 2.21] 0.43

No-cue 1.36 3.36 [−0.06, 2.78] 0.40

2 Interestingly, problem gamblers also display an enhanced reward positivity,
relative to controls, following a random outcome (Oberg, Christie, and Tata,
2011).
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response conditions, accounting for the extremely small no-
choice and no-response reward positivities that we observed.

Although we have highlighted agency, other factors are
likely involved in our observed attenuation of the reward pos-
itivity. One such candidate, motivation, was investigated by
Yeung et al. (2005). Their participants reported, via survey,
that outcomes in the absence of choice were less interesting
compared to outcomes following a choice. Furthermore,
Yeung et al. (2005) noted that the degree to which partici-
pants’ interest differed between tasks was predictive of the
degree to which their reward positivity changed. In other
words, participants who found the choice task more interest-
ing had a larger reward positivity in the choice task, and par-
ticipants who found the no-choice task more interesting had a
larger reward positivity in the no-choice task. Could our

reward positivity results be affected similarly? Previous re-
search suggests that the P300 is affected by factors related to
motivation. For example, larger P300s are elicited when par-
ticipants are told their results will be compared with their
peers’ results (Carrillo-de-la-Peña & Cadaveira, 2000) and
when money is at stake (Begleiter, Porjesz, Chou, & Aunon,
1983; Schmitt, Ferdinand, & Kray, 2015). Additionally, P300
magnitude correlates with reward magnitude (Goldstein et al.,
2006; Meadows, Gable, Lohse, & Miller, 2016; Yeung &
Sanfey, 2004) and self-reported motivation (Kleih et al.,
2010). Like Yeung et al. (2005), we observed an enhanced
P300 in the choice condition (the default doors task) compared
with our other conditions. A motivation account of our results
might suggest that this was because our participants were less
motivated in the absence of choice. Although motivational

Fig. 4 P300 results. Feedback-locked grand average waveforms at
electrode Pz, for each task (left). Mean P300 scores for each task, with
95% confidence intervals (top right). Scalp topography of the P300 for

the mean of all conditions (bottom right). There was an overall P300
increase in the choice task relative to the other tasks
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effects on the reward positivity are still an open area of re-
search, we cannot rule out the possibility that they may have
played a role here.

Although somewhat surprising given previous research,
our data highlight the importance of agency in generating
the reward positivity, a component of the human ERP thought
to reflect an RL prediction error (Holroyd & Coles, 2002).
These data provide further support for the existence of an
RL system within the human brain tasked with learning the
values of actions.
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