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Abstract—To maximize reward, we are faced with the

dilemma of having to balance the exploration of new

response options and the exploitation of previous choices.

Here, we sought to determine if the event-related brain

potential (ERP) in the P300 time range is sensitive to deci-

sions to explore or exploit within the context of a sequential

risk-taking task. Specifically, the task we used required par-

ticipants to continually explore their options—whether they

should ‘‘push their luck’’ and keep gambling or ‘‘take the

money and run’’ and collect their winnings. Our behavioral

analysis yielded two distinct distributions of response

times: a larger group of short-decision times and a smaller

group of long-decision times. Interestingly, these data sug-

gest that participants adopted one of two modes of control

on any given trial: a mode where they quickly decided to

keep gambling (i.e. exploit), and a mode where they deliber-

ated whether to the take the money they had already won or

continue gambling (i.e. explore). Importantly, we found that

the amplitude of the ERP in the P300 time range was larger

for explorative decisions than for exploitative decisions

and, further, was correlated with decision time. Our results

are consistent with a recent theoretical account that links

changes in ERP amplitude in the P300 time range with pha-

sic activity of the locus coeruleus–norepinephrine system

and decisions to engage in exploratory behavior.
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INTRODUCTION

In Mill’s Utilitarianism (1863/2008), he argued that

humans have an inherent desire to maximize utility. As

such, the decisions that we make on a day-to-day and

moment-to-moment basis typically reflect a desire to
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maximize the reward. However, as Dennett (1986) and

others have pointed out, calculating the utility of

decisions in the real world can be challenging because

the potential consequences of our actions are not

always known. Even if utility calculations are restricted

to the near future, complex or novel situations may arise

that require exploring options with unknown

consequences. Exploration is inherently risky but

necessary in order to assess new response options or

reassess old ones. The knowledge gained through

exploration can later be exploited to improve

subsequent decisions, and thus yield even greater

increases in utility. However, one cannot always engage

in exploratory behavior. Rather, one must balance

exploratory behavior with exploitation—selecting the

most rewarding response option as much as possible.

Therefore, an optimal decision strategy for maximizing

utility would entail utilizing an exploitative mode of

control most of the time with occasional instances of

exploratory behavior.

Experimentally, decisions to explore or exploit can be

studied in tasks such as the Balloon Analog Risk Task

(BART: Lejuez et al., 2002). During performance of the

BART, participants must continually explore their

options—either take the money they have already

earned or continue gambling. The key manipulation of

the BART is that, for each pump of the balloon

(gamble), the amount of money earned increases along

with the probability of losing all earned money. This

manipulation makes each gamble increasingly risky.

Thus, there is an optimal response in the BART (i.e.

total number of balloon pumps) that is based on the risk

and reward structure of the task (Lejuez et al., 2002),

and as such, to maximize reward, participants need to

explore in order to determine the optimal number of

balloon pumps. Computational models of the BART

suggest that people make a risk assessment prior to

each pump: a decision to continue pumping or collect

their accumulated reward (Wallsten et al., 2005). The

Wallsten et al. (2005) model’s predictions were recently

corroborated by Wershbale and Pleskac (2010) who

observed two distinct distributions of response times in

human BART performance. Specifically, they observed

that people generally made automatic, rapid responses

in the BART, but occasionally paused to assess

whether or not they should continue gambling.

Wershbale and Pleskac (2010) hypothesized that these

pauses represent the assessments predicted by earlier

modeling work (Wallsten et al., 2005; Pleskac, 2008).

Interestingly, the number of assessments that
d.
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participants made during the BART decreased over time.

Importantly, this change in assessment rate is consistent

with theoretical models of the exploration/exploitation

dilemma. Early in learning, people need to explore more

often in order to determine the reward structure of a

task (e.g., the optimal number of pumps in the BART).

However, once the reward structure is known, people

exploit more frequently. With all of this in mind,

Wershbale and Pleskac (2010) likened fast BART

responses to exploitation and slower responses to

exploration.

Research examining the neural basis of decisions to

explore or exploit is limited (see Cohen et al., 2007 for a

review). In one recent study, Cavanagh et al. (2011)

suggested increased frontal theta-band oscillation as a

possible neural marker of uncertainty-driven exploration.

Specifically, Cavanagh and colleagues (2011) observed

a correlation between medial–frontal theta power and

the parameters of their reinforcement-learning model

during exploration in a decision-making task. From their

results, Cavanagh et al. (2011) hypothesized that

midbrain regions were responsible for exploitation but

that frontal brain regions took control when deciding to

explore in uncertain situations. The Cavanagh et al.

(2011) hypothesis is consistent with an earlier functional

magnetic resonance imaging (fMRI) study that showed

enhanced frontal brain activity during exploratory

decisions in a four-armed bandit task (Daw et al., 2006).

Cavanagh and colleagues’ (2011) hypothesis is also

consistent with work by Frank et al. (2009) that

associated a prefrontal cortex (PFC) dopamine gene

(COMT) with exploratory decisions. In particular, Frank

et al. (2009) showed an effect of COMT gene dose

(which they defined as the amount of methionine-

encoding or met allele present) on uncertainty-driven

exploration. The presence of the met allele is linked to

increased PFC dopamine levels compared to the

presence of the valine-encoding or val allele. Although

Frank et al. (2009) were uncertain about the exact role

of COMT in exploratory behavior, they suggested that

the observed and known effects of the met allele

implicate the PFC as the controller of uncertainty-driven

exploration. Taken together, these studies suggest that

switching from an exploitative to an explorative mode of

control involves the intervention of frontal cognitive

systems over midbrain lower-level reward-processing

systems (see Mars et al., 2011, for more examples of

cognitive control).

Currently, there are no definitive electroence-

phalographic (EEG) correlates differentiating decisions

to explore or exploit. Having said that, there are good

reasons to hypothesize that the event-related brain

potential (ERP) in the time range of the P300 may be

sensitive to this distinction. The P300 is a high-

amplitude, positive ERP component with peak latency

300–500 ms following the presentation of a stimulus

(Sutton et al., 1965) that has been associated with

several different cognitive functions (Polich, 2007). One

influential account—the context-updating hypothesis—

states that the P300 reflects the updating of an internal

model of the probabilistic structure of the world
(Donchin, 1981; Donchin and Coles, 1988). Donchin’s

(1981) account arose out of earlier observations that the

P300 is sensitive to stimulus frequency (Duncan-

Johnson and Donchin, 1977). Consistent with the

context-updating hypothesis, Nieuwenhuis et al. (2005)

recently suggested that ERP changes in the P300 time

range reflect the locus coeruleus–norepinephrine

(LC–NE) system’s response to internal decision-making

processes regarding task-relevant stimuli (Aston-Jones

and Cohen, 2005; Nieuwenhuis, 2011; also see Pineda

et al., 1989, for early work linking the LC and the P300).

The LC contains noradrenergic neurons and provides

the only source of NE to the hippocampus and

neocortex (Berridge and Waterhouse, 2003). Increases

in LC activity, and the associated rise in NE, are linked

to increased exploratory behavior in monkeys (Aston-

Jones and Bloom, 1981; Usher et al., 1999; Aston-

Jones and Cohen, 2005; modeled by McClure et al.

(2006)). Importantly, a series of lesion, psychopharma-

cological, and EEG studies support the link between an

ERP difference in the P300 time range and phasic

changes in the activity of the LC–NE system (see

Nieuwenhuis et al., 2005, for a review). Thus, given the

link between the LC–NE system and exploration, and

the link between the LC–NE system and the P300, it

stands to reason that the amplitude of the ERP in the

P300 time range may differentiate decisions to explore

or exploit.

Our main purpose here was to determine whether or

not ERP amplitude in the P300 time range would be

sensitive to decisions to explore or exploit. To

accomplish this, we had participants perform a modified

version of the BART while EEG data were recorded. In

terms of behavior, we expected to observe a similar

distribution of response times as Wershbale and

Pleskac (2010). In particular, we expected to see two

distinct distributions of response times: one distribution

of fast responses indicative of exploitation, and a

second distribution of slow responses indicative of

exploration. Importantly, we predicted that the amplitude

of the ERP in the P300 time range preceding decisions

to explore would be greater than the ERP amplitude in

the same time range preceding decisions to exploit—a

prediction derived from Nieuwenhuis and colleagues’

(2005) hypothesis that ERP modulation in the P300 time

range is driven by phasic changes in LC–NE activity

linked to internal decision-making processes.

There is a growing body of evidence that the

amplitude of the P300 is also modulated by reward

magnitude (Yeung and Sanfey, 2004; Hajcak et al.,

2005; Bellebaum and Daum, 2008; Wu and Zhou,

2009). The P300’s sensitivity to reward magnitude is of

particular importance here because the purpose of

exploration is to specify or update values associated

with actions, and the purpose of exploitation is to take

advantage of current value assessments (Sutton and

Barto, 1998). As such, we also hypothesized that the

amplitude of the P300 elicited by balloon bursts would

scale with the magnitude of the amount of lost reward,

reflecting an update of participants’ model of the

probabilistic reward structure of the task.
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EXPERIMENTAL PROCEDURES

Participants

Fourteen right-handed university-aged participants (2 male,

mean age: 21.5 ± 1.5) with no known neurological impairments

and with normal or corrected-to-normal vision took part in the

experiment. All of the participants were volunteers who

received monetary compensation for their participation. The

participants provided informed consent approved by the Office

of the Vice-President, Research, Dalhousie University, and the

study was conducted in accordance with the ethical standards

prescribed in the 1964 Declaration of Helsinki.
Apparatus and procedure

Participants were seated comfortably 75 cm in front of a

computer monitor and used a standard USB controller to

perform a computerized risk-taking task (written in MATLAB

[Version 7.14, Mathworks, Natick, USA] using the

Psychophysics Toolbox Extension, Brainard, 1997). To perform

the task, participants pushed a button on the controller to

inflate a ‘‘balloon’’ (initially a 2.8-cm diameter green circle,

subtending 2.1� of visual angle) and earn money. Each trial

began with the presentation of a fixation cross for one second.

After one second, a green-colored balloon appeared behind the

fixation cross, cuing participants to begin self-paced pumping.

With each pump, the balloon either ‘‘grew’’ (increasing in size

by 0.3� of visual angle) and the participant won five cents, or

the balloon ‘‘exploded’’ (turned red—see below for more detail

on the probability of the balloon exploding) and the participant

lost all of the money he or she had won during that trial. As

such, prior to each pump, participants had to decide whether or

not to pump and potentially earn more money, or to stop the

trial and take the money that they had already won (see Fig. 1

for timing details). After each group of 10 trials, participants

were given a self-paced rest break. The experiment consisted

of 300 trials in total. All trials were paid at a rate of 20:1 so that

the average total payoff was $9.37 ± $0.16, with individual

total payoffs ranging from $8.27 to $10.42.

Participants were informed that they would play 300 trials, but

were given no prior information on the probability structure that

governed the balloon exploding; rather, they were only

informed ‘‘it is up to you to decide how much to pump each

balloon—some may pop after one pump, and some may not

pop until the balloon fills the whole screen.’’ In reality, and

unbeknownst to participants, the computer program allowed a

maximum of 30 pumps, and the balloon exploded randomly

with a probability of (31 � n)�1.4 on trial n.
Data collection

The experimental program recorded response time (elapsed time

from the previous button press or start of trial, in ms), decision

type (pump or collect), and whether or not the balloon grew or

exploded. The EEG was recorded from 64 electrodes using

BrainVision Recorder software (Version 1.20, Brainproducts,

GmbH, Munich, Germany). The electrodes were mounted in a

fitted cap with a standard 10–20 layout and were recorded with

an average reference built into the amplifier (see

www.neuroeconlab.com for the exact electrode configuration).

Vertical and horizontal electrooculograms were recorded from

electrodes placed above and below the right eye and on the

outer canthi of the left and right eyes. Electrode impedances

were kept below 20 kO at all times. The EEG data were

sampled at 1000 Hz, amplified (Quick Amp, Brainproducts,

GmbH, Munich, Germany), and filtered through a passband of

0.017–67.5 Hz (90 dB octave roll off).
Data analysis

For each response (balloon pump), a response time defined as

the elapsed time since the previous response was recorded.

Balloon pumps with a response time less than 100 ms or

greater than 2000 ms were excluded from subsequent analysis.

Next, we classified each balloon pump as corresponding either

to a decision to explore or a decision to exploit. Based on

Wershbale and Pleskac (2010), we classified response times

more than three standard deviations above the mean as

decisions to explore. Thus, the increase in balloon size for a

successful pump prior to a long response time was marked as

the time point at which participants began ‘‘exploring’’ or, in

other words, considering their options. All other balloon pumps

were classified as ‘‘exploitations’’, with the preceding increase

in balloon size marked as the time point following which a

decision was made to exploit. Thus, we were able to relabel

the EEG data following data collection, and then use these

revised labels to epoch the EEG data into segments containing

decisions to explore or exploit.

The preprocessing of the EEG data began with the

application of a 0.1–20 Hz phase shift-free Butterworth filter,

following which the continuous EEG data were re-referenced to

the average of the two mastoid channels. As mentioned

previously, our ERP hypotheses concerned two events:

decisions to explore or exploit, and balloon bursts. To test

whether the amplitude of the ERP in the P300 time range was

sensitive to the decision to explore or exploit, 800 ms epochs of

data (from 200 ms before the increase in balloon size to

600 ms after the increase in balloon size) were extracted from

the continuous EEG for each trial, channel, and participant, for

each condition (explore/exploit). Following isolation of the

epoched data, ocular artifacts were corrected using the

algorithm described by Gratton et al. (1983). Subsequent to

this, all trials were baseline corrected using a 200-ms epoch

prior to stimulus onset. Finally, trials in which the change in

voltage in any channel exceeded 10 lV per sampling point, or

the change in voltage across the epoch was greater than

100 lV, were discarded. In total, less than 2% of the data were

discarded.

Our preprocessing resulted in far more exploitation than

exploration segments; as such, only exploitation segments that

immediately preceded exploration segments were used in the

subsequent ERP analysis. Specifically, our average ERP

waveforms only included the 100 epochs corresponding to the

100 longest exploration periods and the 100 epochs (i.e.

exploitation periods) immediately preceding them. Subsequent

to the creation of the average ERP waveforms for each

participants and condition (explore/exploit) we created

difference waveforms for each participant and channel by

subtracting the average exploitation waveforms from the

average exploration waveforms. A visual examination of the

grand average difference waveforms and a review of recent

research (Polich, 2007; Duncan et al., 2009; Nieuwenhuis

et al., 2010) led to a decision to quantify the magnitude of the

ERP in the P300 time range as the maximum positive

deflection of the difference waveform 300–450 ms following the

increase in balloon size at the centro-parietal channel where

the difference was maximal (channel CP2). The resulting ERP

amplitudes were then statistically tested against zero using a

single-sample t-test, with an assumed alpha level of .05.

To evaluate whether the amplitude of the P300 was sensitive

to accumulated reward magnitude, 800 ms epochs of data (from

200 ms before balloon burst/growth onset to 600 ms after burst/

growth onset) were extracted from the continuous EEG for

each trial, channel, and participant for early and late balloon

bursts (i.e. losses) and for the increase in balloon size

immediately preceding the balloon bursts (i.e. potential gains).

Early balloon bursts/growths were defined as bursts that were

preceded by between 1 and 15 successful pumps. Late bursts/

growths were preceded by between 16 and 30 successful

http://www.neuroeconlab.com


Fig. 1. Experimental design, along with timing details. Participants could respond by either pumping the balloon, or collecting the accumulated

reward. Pumps could result in a successful inflation, or a balloon burst, in which case the accumulated reward for that balloon was lost. Relevant

EEG data were recorded at (a) decisions to pump that were followed by a balloon inflation, (b) balloon bursts, and (c) balloon inflations.
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pumps. We then preprocessed the EEG data in an identical

manner as outlined above. Following preprocessing, ERPs

were created by averaging the EEG data by condition for each

electrode channel and participant separately for early and late

gains and losses.

To quantify the P300 evoked by balloon bursts, we created a

difference waveform for each participant and channel by

subtracting the gain (growth) waveforms from the subsequent

loss (burst) waveforms for both early and late balloons (see

above). As before, the P300 was defined as the maximum

positive deflection in the difference waveforms 300–450 ms

following stimulus onset for each balloon burst (early/late) at

electrode site Cz, where the difference was maximal. P300

amplitudes were then statistically tested against zero using a

single-sample t-test, with an assumed alpha level of .05.
RESULTS

Time between pumps

A visual examination of the behavioral data revealed a

subset of trials with longer response times—

presumably, trials in which participants deliberated

whether to take their accumulated money or continue

playing (i.e. exploration). Long decision times (long

inter-pump times) were defined as those more than

three standard deviations above the mean. See Fig. 2

for a set of sample responses. Explore decision points

were defined as increases in balloon size preceding long
inter-pump times. All other increases in balloon size

were classified as exploitations—trials in which the

response time was short, suggesting an exploitative

mode of control. This criterion created two separate

distributions of decision times, each with a different

mean (p< .01): shorter decision times for exploitative

decisions (404 ± 31 ms), and longer decision times for

exploratory decisions (798 ± 50 ms), consistent with

Wershbale and Pleskac (2010). Also consistent with

Wershbale and Pleskac (2010), participants explored

less (3 ± 0.4% of trials for balloons numbered 51–300

compared to 15 ± 3% for balloons 1–50) as they

became more familiar with the task (Fig. 3).
Exploration

Recall that we predicted exploration would lead to a larger

ERP response in the P300 time range preceding longer

response times, as we believed that this reflected

deliberation of the decision to explore or exploit. Indeed,

our analysis of the ERP waveforms in the P300 time

range supported our hypothesis as we found a

difference between explorative and exploitative trials

that was maximal at electrode CP2. Specifically, we

found a larger (more positive) ERP response in the

P300 time range for exploration trials (1.79 ± 0.40 lV)
relative to exploitation trials (0.47 ± 0.39 lV),



Fig. 2. Time between pumps for subject 14, balloon 10. Mean response time was characterized by short, somewhat automatic pumps

(exploitations). Response times more than 3 standard deviations above the mean were classified as explorations.

Fig. 3. Mean exploration rate. The mean number of explorations per

balloon decreased over time. Only the first 100 out of 300 balloons

are shown to emphasize the change in exploration rate over the first

few balloons. A horizontal line is shown at 3%, the mean exploration

rate for balloons 51–300.
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t(13) = 5.202, p< .01 (see Fig. 4).1 We then localized the

source of the voltage difference between exploration and

exploitation trials using standardized low-resolution brain

electromagnetic tomography (sLORETA; Pascual-Marqui,

2002). An sLORETA analysis at 400 ms post decision

(when the ERP response in the P300 time range was

maximal) indicated maximal current sources in Brodmann

Areas 6 and 10 within the superior frontal gyrus (Fig. 5).

Finally, ERP amplitude in the P300 time range for both

exploration and exploitation trials correlated positively

with decision time, r(28) = .51, p = .01 (see Fig. 6).
Balloon bursts

We also wanted to see if the P300 following balloon bursts

was sensitive to accumulated reward magnitude, since

balloon bursts later in a trial sequence reflected a loss

of more money as more money had accumulated. On

average, there was an equal number of early bursts

(53.0 ± 2.2) compared to late bursts (54.1 ± 3.5),

p= .8. In line with our prediction, we found that the
1 We also statistically tested whether the N1 was sensitive to
decisions to explore/exploit. No difference was seen between decisions
to explore/exploit in the N1 time range (130–190 ms post stimulus:
t(13) = .46, p = .67).
amplitude of the P300 scaled to reward magnitude: late

high-valued pumps (defined as pumps 16–30:

35.53 ± 1.69 lV) versus early low-valued pumps

(defined as pumps 1–15: 28.24 ± 2.15 lV),
t(13) = 5.00, p< .001 (see Fig. 7). When all possible

loss values were considered, there was a correlation

between P300 peak and loss value, r(390) = .33,

p< .001 (Fig. 8).
DISCUSSION

In the present study, decisions to explore in a sequential

risk-taking task elicited a larger ERP response in the

time range of the P300—a component sensitive to

cognitive processing (Donchin, 1981; Donchin and

Coles, 1988) and linked to phasic activity of the LC–NE

system (Nieuwenhuis et al., 2005). Supporting our ERP

result, our behavioral data mirrored previous work

(Wershbale and Pleskac, 2010). We observed that

response times in a sequential risk-taking task followed

one of two distributions: longer response times

indicative of exploration and shorter response times

indicative of exploitation. Furthermore, we found that

participants explored less over time as they became

familiar with the probabilistic structure of the task, a

result consistent with observations by Wershbale and

Pleskac (2010) and reinforcement-learning theory in

general (Sutton and Barto, 1998).
Computational framework

Like earlier work on exploration in humans (Daw et al.,

2006; Cavanagh et al., 2011), we relied on a theoretical

model (Wallsten et al., 2005; Pleskac, 2008; Wershbale

and Pleskac, 2010) to identify participants’ decisions to

explore or exploit during task performance. Recall,

decisions preceding fast responses were classified as

exploitatory, while decisions preceding long responses

were classified as exploratory. The validity of this

criterion is critical when interpreting our findings

because, while our difference wave in the P300 time

range for explore/exploit decisions statistically differed

from zero, it was computed by averaging over a post

hoc selection of EEG segments derived from this

classification system.



Fig. 4. Decision to explore or exploit. Note that 0 ms corresponds to the onset of the decision (balloon pump). Negative voltages are plotted up by

convention. (a) Averaged ERP waveforms recorded at channel CP2 for exploration and exploitation decisions. (b) ERP topography map for the

difference waveform (explore minus exploit) at 400 ms post decision.

Fig. 5. sLORETA source analysis of exploration trials compared to exploitation trials at 400 ms post decision. Statistical nonparametric mapping

(SnPM) at a significance level of .05 revealed differences localized in Brodmann Areas 6 (sLORETA value = 35.7) and 10 (sLORETA value = 31.8)

within the superior frontal gyrus.
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Previous research justifies our approach. In a seminal

study, Wallsten et al. (2005) evaluated several models of

BART performance by comparing their simulated outputs

to human behavioral data. Wallsten et al. (2005) found

some variation in exploratory behavior among individual

human participants, with some participants continuing to

gamble after the optimal number of pumps. To account

for this, Wallsten and colleagues’ model included

components that decided how many pumps to make

and whether to stop or keep going prior to each

individual pump. In a later improvement of the Wallsten

et al. (2005) model called the Bayesian sequential risk-

taking model (BSR), Pleskac (2008) included an

individual response bias that changed over time (see

Busemeyer and Pleskac, 2009, for a review of the

different components of dynamic decision-making
models). Wershbale and Pleskac (2010) later amended

the BSR to account for observed delays in response

times so that assessments (decisions to either continue

or stop) only occurred on a subset of trials. The trials

associated with exploratory behavior were preceded by

longer response times—explained as an increase in

cognitive load linked to the decision process. Notably,

and in line with human data, the model predicted that

participants would tend to make fewer assessments

over time, a prediction consistent with both exploratory

behavior and the pattern of results we observed in our

data. The most recent version of the BSR (Wershbale

and Pleskac, 2010) provided a good fit for human BART

data, including between-subject variation in response

selection, and within-subject variation in response-time.

In the present experiment, our participants’ response



Fig. 6. Correlation between decision time (time between pumps) and

magnitude of the peak of the ERP in the P300 time range,

r(28) = .51, p= .01.

Fig. 7. Averaged ERP waveforms recorded at channel Cz for low-

and high-value bursts and inflations. Note that 0 ms corresponds

either to the onset of the balloon burst or the onset of the balloon

inflation. Negative voltages are plotted up by convention.

Fig. 8. Correlation between P300 peaks in response to balloon

bursts and total value of the burst balloon, or total loss, r(390) = .33,

p< .001. Large losses (i.e. balloon bursts preceded by many pumps)

resulted in an enhanced P300.
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time distributions mirrored Wershbale and Pleskac’s

(2010), thus providing strong support for the use of a

response-time criterion to classify participant EEG

segments as either containing decisions to explore or

exploit.
The P300 and exploratory behavior

Our result that ERP amplitude in the P300 time range was

larger for decisions to explore is consistent with the

context-updating hypothesis of the P300 (Donchin,

1981; Donchin and Coles, 1988). Under this theoretical

framework, a P300 is observed whenever new

information requires an update to one’s internal mental

model of the world—specifically, the probabilistic

framework of a particular task (Donchin and Coles,

1988). In our case, to maximize utility, participants had

to learn the optimal number of pumps to undertake, a

challenging task taking into account the value of a given

pump and the risk associated with different balloon
sizes (i.e. that larger balloons entailed greater risk).

Each pump, whether it resulted in a balloon burst or

successful balloon inflation, thus provided information

for participants. This notion is corroborated by earlier

modeling work (i.e. Wershbale and Pleskac, 2010)

suggesting that participants consider new information

and review their potential actions at various points

throughout a sequential decision-making task—points

marked by longer-than-normal response times. It is at

these assessment points, we claim, that participants

incorporate new information into their model of the

BART and then decide whether or not to continue

pumping. As such, at assessment points a larger ERP

in the P300 time range is observed, reflecting the

incorporation of new information into the internal model

and a subsequent exploratory decision. Interestingly, the

length of the assessment period correlated with the

amplitude of the subsequent ERP in the P300 time

range (Fig. 6)—a result that further supports our

hypothesis that the ERP in the P300 time range is

sensitive to decisions to explore or exploit. Finally, an

sLORETA source analysis (Pascual-Marqui, 2002)

revealed a difference in frontal brain regions for

exploration trials compared to exploitation trials,

consistent with earlier research (Daw et al., 2006; Frank

et al., 2009; Cavanagh et al., 2011).

An unavoidable limitation in this study arose because

participants were asked to respond as quickly as they

wanted to. As such, the mean response time

corresponding to decisions to exploit (404 ± 31 ms)

suggests that some of the EEG segments containing

decisions to exploit might have overlapped with the

following decision. However, that participant responses

were self-paced seems an important part of the BART

design, especially if a clear distinction between

explorations and exploitations is to be achieved (Lejuez
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et al., 2002; Wershbale and Pleskac, 2010). Although

there are versions of the BART that introduce timing

delays (Rao et al., 2008; Fukunaga et al., 2012), those

versions do not, to our knowledge, produce the two

distributions of response times necessary to classify

responses as explorations or exploitations (Wershbale

and Pleskac, 2010).

An alternative explanation for our findings relates to

Nieuwenhuis and colleagues’ (2005) hypothesis that the

P300 time range is modulated by phasic activity of the

LC–NE system. Interestingly, research by Usher et al.

(1999) suggests that modulatory activity of the LC is

responsible for regulating exploratory behavior in

monkeys. Extending from this, Nieuwenhuis et al.

(2005) proposed that the LC may regulate exploratory

behavior in humans through the release of NE, with the

change to an exploratory mode of control marked by a

related increase in ERP magnitude in the P300 time

range. Supporting this contention, Aston-Jones and

Cohen (2005) suggested that LC phasic activity is

driven by computations about value in the orbitofrontal

cortex (OFC) and anterior cingulate cortex (ACC). They

further suggested that the purpose of LC phasic release

of NE is to break out of one behavioral routine (e.g.

exploitation) to engage in a different behavior (e.g.

exploration). Importantly, our data support Aston-Jones

and Cohen’s (2005) suggestion and the hypothesized

link between the LC and the P300 (i.e. Nieuwenhuis

et al., 2005) as we observed an increase in the

amplitude of the ERP in the P300 time range when

participants changed to an exploratory mode of control.

A second alterative explanation for our results relates

to response time. Recently, Grinband et al. (2011)

suggested that time on task, rather than an increase in

cognitive control, might be responsible for increased

frontal cortex activity. Grinband et al. (2011) asked

participants to balance speed and accuracy in a Stroop

task and observed that response times were slower and

frontal cortex activity greater on incongruent trials

compared to congruent trials. However, when slow and

fast congruent trials were compared, Grinband et al.

(2011) noted increased frontal activity for slower trials,

even though congruency was controlled for. This

somewhat controversial finding (e.g., Yeung et al.,

2011) is relevant to the current study since we used

response times to categorize decisions as explorations

or exploitations. We observed an enhanced P300 for

longer response times (classified as explorations). This

is consistent with Grinband and colleagues’ (2011)

result, provided one is willing to extend a conflict-

monitoring result to the exploration/exploitation dilemma

(see Ishii et al., 2002; Khamassi et al., 2011, for some

arguments supporting this comparison).

Although the body of research on the EEG correlates

of the exploration/exploitation dilemma is sparse, it is

growing. For example, Tzovara et al. (2012) recently

used EEG to study the Daw et al. (2006) gambling

paradigm and observed increased frontal brain activity

prior to exploratory decisions, which they were able to

define based on a computational model. Like us,

Tzovara et al. (2012) compared ERPs to feedback prior
to participant decisions to explore or exploit, and

observed a difference. However, because Tzovara et al.

(2012) only examined responses to feedback it is

unclear whether their observed difference was due to

the result of a decision to explore, reward evaluation, or

both. Interestingly, Tzovara et al. (2012) observed that

feedback ERP differences (including P300) predicted

whether or not participants explored on subsequent

trials. This lends further support to our second

hypothesis that the P300 scales with reward magnitude,

and our speculation that changing representations of

value (as indexed by the P300) drive exploration (Sutton

and Barto, 1998). A major strength of the present study,

and one that distinguishes it from earlier work on the

explore/exploit dilemma, is that we were able to

examine ERP responses to the explore/exploit decisions

themselves, as opposed to responses to feedback alone.

The P300 and reward magnitude

We also observed that the amplitude of the P300 was

sensitive to reward magnitude. Specifically, we found a

larger P300 amplitude for high-valued losses (balloon

bursts) compared to low-valued losses—a result

reflective of a neural representation of the magnitude of

the value of taking different actions. In this case, the

aforementioned representation related to the negative

value associated with losses following early low-valued

pumps versus later high-valued pumps. This finding is

consistent with earlier work showing that the amplitude

of the P300 is (a) sensitive to the magnitude of both

wins and losses (Yeung and Sanfey, 2004) and (b)

could be related to the motivational significance of

feedback (Nieuwenhuis et al., 2005; Nieuwenhuis,

2011). Simply put, high-valued rewards and losses are

more motivationally significant than low-valued rewards

and losses. Of particular relevance here, Yeung and

Sanfey (2004) speculated that the P300 might be

impacted by the magnitude of actual and alternate

outcomes (what might have been)—in other words, they

speculated that the P300 reflects an objective

representation of reward magnitude, regardless of

whether or not the reward was actually received. In the

present study, losses represented alternate outcomes:

what participants might have won had they collected

their money instead of gambling. Thus, our result that

the P300 amplitude scaled with what might have been

won supports the idea that the P300 reflects an

objective representation of reward.

CONCLUSIONS

Research on the neural basis of exploration in humans

has thus far lacked specific neural markers for this

behavior. Here, we found that decisions to explore or

exploit modulated ERP amplitude in the P300 time

range in a sequential risk-taking task. Interestingly, this

result is in line with a theoretical account that relates

ERP amplitudes in the P300 time range to changes in

phasic LC–NE activity—changes which are yoked to

increased exploratory behavior (Aston-Jones and

Cohen, 2005; Nieuwenhuis et al., 2005). As such, our
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results (a) suggest that the amplitude of the ERP in the

P300 time range is sensitive to decisions to explore or

exploit and (b) relate modulation of the ERP in the P300

time range to an underlying neural system that is

responsible for these changes: the LC–NE system. Of

further interest, our results are in line with previous

findings (e.g. Yeung and Sanfey, 2004) that

demonstrate that the amplitude of the P300 scales to

reward magnitude.
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