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H I G H L I G H T S

• Decisions to explore are preceded by an enhanced feedback-locked P300.

• The reward positivity does not distinguish explorations from exploitations.

• Explorations involve more response conflict than exploitations.
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A B S T R A C T

The decision trade-off between exploiting the known and exploring the unknown has been studied using a
variety of approaches and techniques. Surprisingly, electroencephalography (EEG) has been underused in this
area of study, even though its high temporal resolution has the potential to reveal the time-course of exploratory
decisions. We addressed this issue by recording EEG data while participants tried to win as many points as
possible in a two-choice gambling task called a two-armed bandit. After using a computational model to classify
responses as either exploitations or explorations, we examined event-related potentials locked to two events
preceding decisions to exploit/explore: the arrival of feedback, and the subsequent appearance of the next trial's
choice stimuli. In particular, we examined the feedback-locked P300 component, thought to index a phasic
release of norepinephrine (a neural interrupt signal), and the reward positivity, thought to index a phasic release
of dopamine (a neural prediction error signal). We observed an exploration-dependent enhancement of the P300
only, suggesting a critical role of norepinephrine (but not dopamine) in triggering decisions to explore. Similarly,
we examined the N200/P300 components evoked by the appearance of the choice stimuli. In this case, ex-
ploration was characterized by an enhancement of the N200, but not P300, a result we attribute to increased
response conflict. These results demonstrate the usefulness of combining computational and EEG methodologies,
and suggest that exploratory decisions are preceded by two characterizing events: a feedback-locked neural
interrupt signal (enhanced P300), and a choice-locked increase in response conflict (enhanced N200).

1. Introduction

Making choices involves managing a trade-off between different
decision types, such as risky versus safe, emotional versus logical, and
automatic versus deliberative. One such trade-off is deciding whether to
exploit previous learning or explore new options (the “explore-exploit
dilemma”: Gittins and Jones, 1974). Exploration is useful when it re-
duces our uncertainty about the world and leads to better future out-
comes (Behrens et al., 2007). However, in order to experience those
positive outcomes, it is also important to exploit what is known, i.e., to
forgo exploration in order to make value-maximizing decisions.

Humans, like other animals, have evolved neural systems to manage the
explore/exploit dilemma, a critical ability in uncertain environments.

Broadly speaking, two neurotransmitters are thought to regulate the
explore/exploit dilemma: dopamine and norepinephrine. There is evi-
dence that greater tonic dopamine is associated with exploration
(Beeler, 2012; Beeler et al., 2010; Frank et al., 2009; Kayser et al.,
2015). For example, individuals with greater dopamine levels in pre-
frontal cortex tend to explore more (Frank et al., 2009). In addition to
dopamine, the neurotransmitter norepinephrine has been implicated in
exploration (Aston-Jones and Cohen, 2005; Gilzenrat et al., 2010;
Jepma and Nieuwenhuis, 2011; Kane et al., 2017; Warren et al., 2017).
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Neurons within the locus coeruleus (LC), the main source of nor-
epinephrine in the brain, show two patterns of firing: phasic bursts of
activation in response to task-relevant events, and more gradual tonic
(baseline) changes. For example, during a reversal learning task phasic
LC activation to a previous target decreases when that target is no
longer rewarding; activation shifts instead to the new target (Aston-
Jones et al., 1997). Thus, phasic LC activation is associated with good
signal detection and stimulus-response learning in monkeys (Aston-
Jones et al., 1997; Clayton et al., 2004). An increase in tonic LC acti-
vation, on the other hand, is associated with poor task performance and
high levels of distraction (Aston-Jones and Cohen, 2005). The tonic LC
mode may not be maladaptive, however. Converging animal, drug, and
pupillometry evidence suggests that high tonic norepinephrine may
promote exploration: trying other bandits in a multi-armed bandit task
(Jepma and Nieuwenhuis, 2011), leaving a patch while foraging (Kane
et al., 2017), and disengaging from a tone discrimination task when
rewards diminish (Gilzenrat et al., 2010).

Investigations into the role of dopamine and norepinephrine in the
explore/exploit dilemma have thus far been fruitful. It is therefore
surprising that little is known about the electroencephalographic (EEG)
correlates of these decisions. This is surprising for two reasons. First,
the high temporal resolution of EEG lends itself to the time-course of
human decision-making (Heekeren et al., 2008). Second, there is evi-
dence that the activity of dopamine and norepinephrine may be in-
directly measured via event-related potentials (ERPs) – the averaged
EEG response to an event. For example, the reward positivity is an ERP
component thought to reflect the effect of phasic dopamine on anterior
cingulate cortex (ACC: Holroyd and Coles, 2002; Holroyd and Yeung,
2012). According to Holroyd and Coles (2002), phasic changes in do-
pamine signify reinforcement learning (RL) prediction errors that
modulate the magnitude of the reward positivity. The ACC, according
to this view, is attempting to learn the value of options (sequences of
actions: Holroyd and McClure, 2015; Holroyd and Yeung, 2012). Note
that the reward positivity is usually thought of as being sensitive to
phasic, not tonic, dopamine activity. There is evidence, however, that
these two types of dopamine activity are related (Grace et al., 2007; Niv
et al., 2007). Relevant here, the reward positivity is affected by tonic
dopamine; greater prefrontal baseline dopamine activity predicts either
a decreased reward positivity (Marco-Pallarés et al., 2009) or an in-
creased reward positivity (Foti and Hajcak, 2012).

The reward positivity is actually a special case of another ERP
component, the N200 (Baker and Holroyd, 2011; Holroyd et al., 2008).
While the reward positivity occurs specifically in response to feedback,
the N200 is elicited by any task-relevant event, is enhanced for sur-
prising events, and is thought to reflect cortical activity arising from a
phasic release of norepinephrine (Hong et al., 2014; Mückschel et al.,
2017; Warren and Holroyd, 2012; Warren et al., 2011). Thus, assuming
that feedback is unexpected, the amplitude of the reward positivity
depends on both reward-related phasic dopamine activity and surprise-
related norepinephrine activity. N200 modulation, on the other hand, is
tied more to norepinephrine activity alone (Hong et al., 2014;
Mückschel et al., 2017; Warren and Holroyd, 2012; Warren et al.,
2011). The N200 is often followed by another norepinephrine-depen-
dent ERP component called the P300 (Nieuwenhuis et al., 2005). Like
the N200, the P300 is enhanced for infrequent and/or task-relevant
stimuli and has also been linked to the phasic release of norepinephrine
(Murphy et al., 2011; Nieuwenhuis et al., 2005; Nieuwenhuis et al.,
2011). In summary, it may be possible to track phasic changes in nor-
epinephrine via the N200 and P300, and phasic changes in dopamine
via the reward positivity.

Previous work on the EEG correlates of exploration and exploitation
is sparse. Early work by Bourdaud et al. (2008) analyzed EEG recorded
from participants performing a four-armed bandit task (Daw et al.,
2006). Bouraud and colleagues (2008) asked simply whether or not pre-
response EEG was capable of differentiating decisions to explore and
exploit. To answer this question, they showed that machine learning

could successfully classify trials as explorations and exploitations based
on the frequency content of EEG at frontal and parietal sites (also see
Tzovara et al., 2012). Consistent with this result, Cavanagh et al. (2011)
observed a correlation between uncertainty and response-locked medial
frontal theta power that was positive for exploratory decisions, but
negative for exploitative decisions. Finally, Hassall et al. (2013) ob-
served an enhancement of the P300 component at the time of ex-
ploratory responses compared to exploitative responses during a se-
quential risk-taking task called the Balloon Analogue Risk Task (BART:
Lejuez et al., 2002). Responses and feedback occur simultaneously in
the BART, though, so it is unclear which event (response or feedback)
led to the P300 effect observed by Hassall and colleagues (2013).

Our goal here was to use EEG to affirm the roles of dopamine and
norepinephrine in managing the explore/exploit dilemma. To do this,
we examined ERP components locked to two events in a two-armed
bandit task: the (feedback-locked) reward positivity/P300 and the
(choice-locked) N200/P300. We hypothesized that the enhanced tonic
dopamine activity associated with exploration would, when combined
with the usual reward-related phasic dopamine activity, effect the re-
ward positivity (either enhance it or reduce it). In light of conflicting
reports (Foti and Hajcak, 2012; Marco-Pallarés et al., 2009) we did not
hypothesize as to which decision type would elicit the larger reward
positivity, only that there would be a difference. To generate our N200/
P300 hypothesis, we considered two somewhat conflicting viewpoints
on the role of norepinephrine in regulating the explore-exploit di-
lemma. As mentioned, previous studies have suggested that the tonic
mode of LC activity (low task performance/high distraction) may fa-
cilitate exploration, while the phasic mode of LC activity (high task
performance/low distraction) may facilitation exploitation (Gilzenrat
et al., 2010; Jepma and Nieuwenhuis, 2011; Kane et al., 2017;
Nieuwenhuis et al., 2005; Warren et al., 2017). Based on this inter-
pretation, and since the N200/P300 complex is associated with phasic
norepinephrine, one might predict enhancements of those components
around the time of exploitations. However, Dayan and Yu (2006) in-
terpreted phasic norepinephrine as a neural interrupt signal, signaling a
need to update one’s model of the world – or context – and to switch
strategies accordingly (also see: Bouret and Sara, 2005; Yu and Dayan,
2005). Indeed, Donchin’s (1981) context-updating hypothesis of the
P300 can be considered a precursor to the LC-NE hypothesis of the P300
(the LC-NE P3 theory: Nieuwenhuis et al., 2005) as both highlight the
motivational/task significance of a stimulus. Under this view, a phasic
burst of NE (and large, concomitant P300) to feedback could signal a
need to explore the environment, provided that exploitation had been
the dominant strategy, such as in a reversal learning task in which re-
versals are relatively rare (as seen in Aston-Jones et al., 1997, for ex-
ample). For example, in the BART, used by Hassall et al. (2013), ex-
plorations were rare, and associated with a greater P300 compared to
exploitations. For these reasons, we hypothesized that explorations in
our task would be associated with an enhancement of the feedback-
locked P300 and choice-locked N200/P300.

2. Results

2.1. Model

Our greedy model generated an average negative log-likelihood of
787, 95% CI [602, 973]. Using softmax for action selection resulted in
an improved model fit - a negative log-likelihood of 368, 95% CI [323,
413], t(17)=−5.94, p < .001, Cohen's d=-1.40. The average tuned
softmax model parameters were as follows: τ =0.07, 95% CI [−0.04
0.17] and α=0.14, 95% CI [−0.02, 0.30].

2.2. Behavioural

The mean accuracy (all trials) was 78%, 95% CI [75, 82]. The mean
proportion of explorations (all trials) was 20%, 95% CI [17, 24]. Mean
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accuracy was correlated with mean proportion of explorations, r
(16)=−0.79, p < .001. Explorations and exploitations did not differ
in response time exploitations: 376ms, 95% CI [327, 424], explora-
tions: 371ms, 95% CI [324, 418]), t(17)= 1.44, p= .16, Cohen's
d=0.29. See Fig. 2 for behavioural results.

2.3. Reward positivity

Single-sample t-tests revealed reward positivities prior to decisions
to exploit (3.25 µV, 95% CI [1.89 4.60], t(17)= 9.74, p < .001,
Cohen’s d=2.30) and decisions to explore (3.27 µV, 95% CI [2.56
3.98], t(17)= 5.04, p < .001, Cohen’s d=1.19. A paired-samples t-
test comparing the pre-explore reward positivity to the pre-exploit re-
ward positivity revealed no effect of decision type: t(17)=−0.05,
p= .96, Cohen’s d=−0.01 (Fig. 3).

2.4. Feedback-Locked P300

Mean P300 was greater for wins than losses prior to both decisions
to exploit (pre-exploit loss: 6.76 µV, 95% CI [4.99, 8.54]; pre-exploit
win: 10.90 µV, 95% CI [8.91, 12.90]) and decisions to explore (pre-
explore loss: 8.55 µV, 95% CI [6.48, 10.61]; pre-explore win: 12.51 µV,
95% CI [10.20, 14.81]). A 2X2 ANOVA with feedback (loss, win) and
decision (exploit, explore) as repeated measures revealed main effects
of feedback, F(1,18)= 47.28, p < .001, ηp2= 0.736, ηg2= 0.205, and,
importantly, decision type, F(1,17)= 18.43, p < .001, ηp2= 0.520,
ηg2= 0.043. There was also no significant interaction between feed-
back and decision, F(1,17)= 0.14, p= .86, ηp2= 0.008, ηg2 < 0.001
(Figs. 4 and 6).

2.5. Single-Trial analysis

The mean slope of a regression line relating P300 magnitude to
softmax probability was −0.059, 95% CI [−0.076 to 0.042]. In other
words, the P300 dropped by 0.059 µV for every percent of softmax
probability. A single-sample t-test showed the slope to be significantly
different from zero, t(17)=−7.31, p < .001, Cohen’s d=−1.72 (Fig.
A1).

Fig. 1. Two-armed bandit task. Participants were given feedback after selecting
one of two colored squares, or bandits. On average, one bandit paid more points
than the other. Losses were always the same magnitude (5 points).

Fig. 2. Behavioral results. Accuracy (top
left) was defined as the proportion of trials
that participants selected the higher-valued
option. A computational model classified
each trial as an exploration or exploitation
(mean exploration proportion: top left).
Mean response time did not differ by deci-
sion type (bottom left, individual means also
shown). In this task, participants who ex-
plored more tended to perform worse
(bottom right). The shaded regions and
error bars show 95% confidence intervals.
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2.6. Choice-Locked N200

The choice-locked N200 magnitude was 4.36 µV, 95% CI [2.92,
5.79] on exploitation trials and 3.53 µV, 96% CI [2.02, 5.04] on ex-
ploration trials. A paired-sampled t-test indicated a statistically-sig-
nificant difference, t(17)=−3.24, p= .005, Cohen’s d=−0.76
(Figs. 5 and 6).

2.7. Choice-Locked P300

The bandit-locked P300 magnitude was 5.06 µV, 95% CI [3.76,
6.36] on exploitation trial and 5.26 µV, 96% CI [3.84, 6.68]. A paired-

sampled t-test indicated no statistically-significant difference, t
(17)= 0.73, p= .47, Cohen’s d=0.17 (Fig. 5).

3. Discussion

Our results suggest the involvement of two neural systems when tran-
sitioning from an exploitative to an exploratory mode of decision-making.
First, feedback-locked phasic activity of the LC-NE system is associated with
decisions to explore. Second, exploratory decisions may elicit enhanced
response conflict, processed within ACC. These two neural systems – phasic
LC-NE activity and conflict-related ACC activity – are indexed by en-
hancements to the P300 and N200 ERP components, respectively.

Fig. 3. Reward positivity preceding decisions to
exploit and explore. Conditional waveforms are
show in the top left panel, and difference waves (win
minus loss) are shown in the bottom left panel. The
vertical shaded rectangle indicates the analysis
window. The shaded regions around each difference
wave reflect 95% confidence intervals.

Fig. 4. Feedback-locked P300 waveforms and scalp distributions preceding decisions to exploit and explore. The shaded rectangle indicates the analysis window. The
grey lines show effect size (ηg2) for each main effect (feedback: loss/win, decision: exploit/explore) computed on a moving mean (window length: 100ms).
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Behaviorally, our participants learned to pick the optimal bandit in
a two-armed bandit task. A model, fit to each individual’s behavior,
determined which responses were exploitations and which were ex-
plorations – that is, on which trials the higher-valued bandit was
chosen, and on which trials the alternative was chosen. Our task was
stationary – outcome contingencies never changed within a block – and
more exploration was associated with poorer performance (see corre-
lation in Fig. 2). In general, exploration rate is driven by a combination
of individual differences (e.g. Frank et al., 2009) and context. Se-
quential decision problems, such as bandit tasks, may be stationary or
non-stationary, and may have any number of choices/actions. A full
review of the decision-making literature is beyond the scope of this
study, but it is worth mentioning a couple of relevant examples. Jepma
and Nieuwenhuis (2011) used a four-armed bandit with continuously
drifting average rewards, similar to Daw et al. (2006). They reported a
mean exploration rate of 31%. Blanchard and Gershman (2018) used a
two-armed bandit with only occasional reversals (5% of trials). Their
participants’ average exploration rate dropped from 85% to 12% over a
50-trial block. The point of these examples is to illustrate that ex-
ploration rate can vary greatly across experiments, and that our mean
exploration rate – which dropped from 47% to 13% over a 20-trial
block – is in line with previous bandit studies (Fig. 2).

3.1. Neural response to feedback

By categorizing choices as either explorations or exploitations, we
were able to examine the neural response to feedback preceding each
decision type. We observed an ERP difference at a scalp location and
time range consistent with the P300, an ERP component that, like the
N200, is thought to relate to a phasic release of norepinephrine
(Nieuwenhuis et al., 2005). The neurotransmitter norepinephrine has
featured heavily in several theories of decision making. Relevant here is
the view that norepinephrine indexes a neural interrupt – a signal that
one’s current model of the world might be erroneous, potentially re-
quiring a strategy switch (Bouret and Sara, 2005; Dayan and Yu, 2006;
Yu and Dayan, 2005). For example, imagine a participant in the current
study trying to win as many points as possible by selecting which of two
slot machines to play (the two-armed bandit task). The participant is
told that one of the bandits yields a greater average reward than the
other. Initially, the participant continues to select one of the bandits
because the payouts seem high. At some point, however, the participant
decides explore the other option. We argue that this switch – from
deciding to exploit one option, to deciding to explore the other – is one
example of the neural interrupt discussed by (Bouret and Sara, 2005;
Dayan and Yu, 2006; Yu and Dayan, 2005). Supporting this assertion is
our observation that feedback preceding decisions to explore (and less-

Fig. 5. Choice-locked N200 waveform and scalp distributions. The vertical shaded rectangle indicates the analysis window. The shaded region around the difference
wave reflects a 95% confidence interval.

Fig. 6. Summary of results. There was a main effect of upcoming decision type on the feedback-locked P300 (left) and choice-locked N200 (right). Error bars show
the 95% confidence intervals.
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likely decisions, in general) elicited an enhanced P300 compared to
feedback preceding decisions to exploit.

Our other feedback-related hypothesis involved the reward posi-
tivity, an ERP component thought to index the phasic release of do-
pamine (Holroyd and Coles, 2002). Based on previous research linking
tonic dopamine and exploration (and other work suggesting that tonic
dopamine effects the reward positivity) we hypothesized an effect of
decision type (exploit/explore) on the reward positivity. However, al-
though we observed a robust reward positivity for both exploitations
and explorations, we found no statistically-significant effect of decision
type (Fig. 3). One possible confound here is component overlap. Be-
cause the P300 and reward positivity components overlap in time, ex-
amining the reward positivity is problematic when P300 effects are also
present (such as in the present study – see Figs. 3 and 4). P300 con-
tamination is usually due to frequency effects (e.g., when losses are less
frequent than wins) but it’s possible that other events affecting the P300
– such as the neural processes associated with exploration – may have
hindered our reward positivity investigation. We suggest that to prop-
erly examine the role of the reward positivity in the explore/exploit
trade-off would require a task for which the P300 is unaffected by
feedback valence (as it is here). See Krigolson (2017) for a discussion of
component overlap and other methodological considerations.

3.2. Neural response to bandits

Following feedback, participants were presented with the choice
stimuli again, i.e. the bandits. We observed that the choice-locked N200
ERP component was greater for explorations compared to exploitations.
Note, however, that this analysis was exploratory – the observed N200
effect was only apparent after an examination of the difference wave-
form, and appeared to overlap with a P200 component. Furthermore,
we observed the predicted enhancement of the bandit-locked N200
prior to explorations, but no enhancement of the bandit-locked P300.
These components often co-occur and are referred to as the N200/P300
(or N2/P3) complex (Duncan-Johnson and Donchin, 1977). According
the modified LC-P3 theory, both the N200 and the P300 depend on
phasic norepinephrine (Hong et al., 2014; Mückschel et al., 2017;
Warren and Holroyd, 2012; Warren et al., 2011). In particular, the
modified LC-P3 theory suggests that phasic bursts of norepinephrine
have two effects: an initial cortical enhancement between 200 and
300ms, and a later cortical impairment between 300 and 600ms. In
other words, phasic norepinephrine enhances both the N200 and the
P300, but through different mechanisms (N200: abundance, P300: de-
pletion). To be consistent with the modified LC-P3 theory, we must
conclude that our bandit stimuli did not elicit a greater phasic release of
norepinephrine prior to decisions to explore compared to decisions to
exploit. If they had, we would have observed an exploration-dependent
enhancement of both the N200 and the P300. We are thus left with the
following question: what could elicit an enhancement of the N200 but
not the P300?

To answer this question, we turn to the cognitive control and conflict
monitoring literature. Cognitive control is a set of processes that enable
humans to flexibly adapt to new situations and goals. According to the
conflict-monitoring hypothesis, the need for cognitive control is triggered
via the detection of information processing conflict (Botvinick et al.,
2001). For example, incongruent stimuli in the Stroop task activate two
competing responses – reading the word and naming the color – thus
eliciting response conflict and a need for control (Botvinick et al., 2001;
Stroop, 1935). In the brain, conflict is processed within the ACC, which
generates a conflict-dependent N200; incongruent stimuli in a flanker task
elicit an enhanced N200 relative to congruent stimuli (Yeung et al., 2004).
Tasks that elicit a conflict-dependent N200 tend to also elicit a P300, but
Enriquez-Geppert et al. (2010) showed that the N200 mostly indexes
conflict, while the P300 mostly indexes motor inhibition. Thus, an N200
effect in the absence of a P300 effect is possible provided that there is
response conflict but not motor inhibition.

We speculate that our exploration trials prompted response conflict
because of the simultaneous activation of two responses: the compu-
tationally valuable exploitative option, and the computationally less
valuable exploratory option. Here, exploitations represented the pre-
potent response and, like go trials in a go/no-go task, elicited low re-
sponse conflict. Thus, the bandit-locked N200 was enhanced for ex-
plorations (high conflict) relative to exploitations (low conflict). We
observed no such enhancement of the bandit-locked P300, however. As
Enriquez-Geppert et al. (2010) showed, this pattern of results is possible
for tasks that elicit response conflict but not motor inhibition. Since
motor inhibition is presumably most relevant around the time of the
response, this seems a reasonable characterization of our bandit-locked
results; our participants were not cued to respond until around one
second after the appearance of the bandits. Thus, the appearance of our
bandits impacted the N200 but not the P300.

A response-conflict interpretation of our bandit-locked N200 result
aligns with work suggesting that the ACC (the neural generator of the
conflict-dependent N200) is involved with decisions to explore or ex-
ploit only insofar as it is more active during difficult choices. Shenhav
et al. (2014) pointed out that foraging experiments tend to confound
foraging value – the value associated with exploration – with choice
difficulty (i.e., conflict). As the value of switching approaches the value
of staying, and exploration becomes more likely, choice difficulty in-
creases. When foraging value and choice difficulty are dissociated, ACC
activity tends to track the latter (Shenhav et al., 2014). It is therefore
problematic to conclude that the ACC has a special role in foraging
beyond the processing of choice difficulty (e.g., in tracking foraging
value: Kolling et al., 2012). The enhanced N200 we observed just prior
to decisions to explore is consistent with the view that the ACC pro-
cesses choice difficulty during explore/exploit decisions. It may also be
consistent with the view that the ACC processes foraging value (Kolling
et al., 2012), as we did not dissociate foraging value and choice diffi-
culty. However, a foraging-value account of our N200 data does not
seem as promising as a conflict-monitoring account given the amount of
literature linking the ACC-generated N200 to response conflict (Baker
and Holroyd, 2011; Enriquez-Geppert et al., 2010; Nieuwenhuis et al.,
2003; Yeung et al., 2004).

4. Conclusions

By examining ERPs to two events – feedback and choice stimuli - we
demonstrate the contribution of three neural systems to the explore-
exploit dilemma. First, phasic activity of the LC-NE system, as indexed
by a feedback-locked P300, plays a critical role in triggering a switch
from exploitative to explorative decision making. Conversely, phasic
midbrain dopamine does not appear to play this same role; the reward
positivity, a dopamine-driven RL signal, did not predict decision type.
Finally, the period just prior to a decision to explore appears to involve
response conflict; the bandit-locked N200, a neural conflict signal ori-
ginating in ACC, was enhanced prior to exploratory decisions.

5. Experimental procedure

5.1. Participants

Twenty-three university-aged participants (9 male, 1 left-handed,
Mage=22, 95% CI [21, 23] with no known neurological impairments
and with normal or corrected-to-normal vision took part in the ex-
periment. Participants who did not meet a pre-set accuracy threshold of
60% (as defined below in the Data Analysis subsection) were excluded
from the analysis. In total, five participants were excluded from the
analysis due to poor performance (mean accuracies of 56%, 51%, 50%,
48%, and 50%). All of the participants were volunteers who received
credit in an undergraduate course for their participation. The partici-
pants provided informed consent approved by the Health Sciences
Research Ethics Board at Dalhousie University.
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5.2. Apparatus and procedure

Participants were seated comfortably 75 cm in front of a computer
display and used a standard USB keyboard to perform a computerized
gambling task, written in MATLAB (Version 7.14, Mathworks, Natick,
USA) using the Psychophysics Toolbox Extension (Brainard, 1997;
Kleiner et al., 2007; Pelli, 1997). Participants received both verbal and
written instructions and were encouraged to maintain a central fixation
and to minimize head movements and eye blinks. Participants were told
that the goal of the task was to win as many points as possible.

The experimental task was a two-choice gambling game (i.e., a two-
armed bandit: Sutton and Barto, 1998). Comprised of two one-armed
bandits, or slot machines, our two-armed bandit required that partici-
pants choose between one of two possible gambles, represented by
colored squares presented to the left and right of a central fixation
point. Participants were told beforehand that one of the choices had a
higher average win payout than the other. The loss amounts associated
with each choice were equivalent. Thus, participants were gambling
based on the win payouts; the overall proportion of wins to losses was
not task relevant. At the beginning of a trial, a 1.1 cm fixation cross
subtending 0.84 degrees of visual angle was presented for
900–1100ms. Subsequent to this, two colored squares appeared, each
2.8 cm across and subtending 2.14 degrees of visual angle, equidistant
on either side of the fixation cross. The squares were 11.3 cm apart,
center-to-center, or 8.62 degrees of visual angle. After the squares were
presented for 900–1100ms, the fixation cross changed color to cue
participants to respond by selecting either the left square (‘a’ key) or
right square (‘l’ key). If participants responded too early, points were
deducted from the total won. Similarly, participants were told that
points would be deducted if they responded too late (after two sec-
onds). This ensured that all valid responses occurred within a
0–2000ms window following the go cue.

After a valid response, the squares were removed, leaving only a
fixation cross on the display for 400–600ms. Participants then viewed a
feedback stimulus indicating the amount of points won or lost on that
trial for 1000ms. As explained to participants in the instructions, half of
the trials resulted in a win, and half of the trials in a loss; specific
outcomes were determined by a pseudorandom number generator.
Thus, the chance of winning any given trial was 50%. This ensured that
a similar number of win and loss trials would be available for later
analysis (Holroyd and Krigolson, 2007; Krigolson, 2017). Loss trials
resulted in a 5-point deduction, regardless of which square was se-
lected. Wins, on the other hand, always paid a positive amount that was
dependent on which square was selected. Each square, or bandit, paid
amounts selected from Gaussian distributions with identical variances
(σ2= 1), but with different means. A block consisted of 20 gambles, or
trials, after which a new block began with two new random colors and
two new reward distributions. Participants were told that after each
block the squares reset (new colors and payouts), and that they then
had to relearn which square was the higher-paying choice in order to
win as much as possible. Participants completed 50 blocks in total and
were given a self-paced rest break every 10 blocks.

To ensure that the task presented a similar level of difficulty for all
participants, payout distributions were initially quite different (means
of 6 and 12 points). The mean of the lower valued square was increased
by one after every block as long as participants were able to achieve an
accuracy of 80% (defined as selecting the higher valued option in the
second half of a block at least 8 times out of 10). The payout dis-
tributions were fixed once participant accuracy dropped below 80%,
i.e. once an appropriate level of difficulty for that participant was
achieved. See Fig. 1 for timing details.

5.3. Data collection

The experimental program recorded participant choice (higher or
lower valued square) and response time. The EEG was recorded from 64

electrode locations using Brain Vision Recorder software (Version 1.20,
Brain Products, GmbH, Munich, Germany). The electrodes were
mounted in a fitted cap with a standard 10–20 layout and were re-
corded with an average reference built into the amplifier. The vertical
and horizontal electrooculograms were recorded from electrodes placed
above and below the right eye and on the outer canthi of the left and
right eyes. Electrode impedances were kept below 20 kΩ. The EEG data
were sampled at 1000 Hz and amplified (Quick Amp, Brainproducts,
GmbH, Munich, Germany).

5.4. Computational model

Our analysis depended on classifying participant decisions as either
exploitations or explorations. To achieve this, we modeled each parti-
cipant’s responses, trial by trial. Our model, used previously in
Krigolson et al. (2013), maintained a value for each bandit stimulus on
each trial: vt(1) and vt(2). The probability on trial t of selecting stimulus
i (that is, the likelihood of making an action ai) was computed as per the
softmax equation:

P a e
e e

( )t i
v i

v v

( )/

(1)/ (2)/

t

t t
=

+

where τ (temperature) determined the degree of bias towards choosing
high-valued stimuli (greater bias for lower τ). On each “win” trial,
following feedback Rt, a prediction error δt was generated for the se-
lected stimulus s according to:

R v s( )t t t=

The value of the chosen bandit s was then updated using the fol-
lowing learning rule:

v s v s( ) ( )t t t1 = ++

in which prediction errors were scaled by α. The value of the unselected
stimulus was unchanged. Losses, designed to be uninformative in this
task, did not result in any prediction error computation or model up-
date. (Recall that losses occurred with 50% probability, regardless of
bandit choice, and only ever resulted in a loss of 5 points). To support
this design choice, we compared our model to one in which both wins
and losses prompted model updates.

The temperature and learning rate were tuned for each participant.
These parameters (τ, α) were tuned using the MATLAB function
fmincon (Optimization Toolbox, Release 2018a, Mathworks, Natick).
Specifically, we constructed an objective function (the function to be
minimized) as the negative log-likelihood of a participant’s set of re-
sponses. Log-likelihood was computated as:

P alog( ( ))
t

t s

where Pt(as) was the softmax probability associated with the selected
bandit s on trial t.

To reiterate: model tuning was done for each participant. Thus, the
model-tuning procedure generated learning parameters (τ, α) for each
participant. Additionally, we classified trials as exploitations or ex-
plorations using the softmax result on each trial. Trials on which the
participant made the less likely response, according to the softmax
equation, were classified as explorations. All other trials – trials in
which the higher-probability response was made – were classified as
exploitations. As expected, there were more explorations early in
learning (Fig. 2). These trial classifications (exploit/explore) were used
to drive the ERP analysis – see below.

5.5. Data analysis

5.5.1. Behavioral
For each participant and trial (1–20) we computed the mean pro-

portion of times, across all blocks, that the optimal choice was made
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(i.e., the higher-valued bandit was chosen). We also computed the mean
of this proportion across all trials and participants. Similarly, we
computed the mean proportion of explorations for each trial (1–20)
from each participant’s trained model. We then computed the average
and standard deviation of this exploration proportion across all parti-
cipants. Finally, we computed the mean response times for each deci-
sion type (exploit/explore).

5.5.2. EEG
EEG data were downsampled to 250 Hz, filtered through a

(0.1 Hz–30 Hz pass band) phase shift-free Butterworth filter (60 Hz
notch), and re-referenced to the average of the two mastoid channels.
Next, ocular artifacts were removed using independent component
analysis. Subsequent to this, and for each event of interest (stimulus and
feedback presentation), 800ms epochs of EEG data were constructed
from 200ms prior to 800ms following event onset. All trials were then
baseline corrected using a 200ms pre-event window. Finally, trials in
which the change in voltage in any channel exceeded 10 µV per sam-
pling point or the change in voltage across the epoch was greater than
100 µV were discarded. On average, we removed 6.3% of the stimulus-
locked epochs (95% CI [3.8, 8.9]) and 6.6% of the feedback-locked
trials (95% CI [3.7, 9.5]). Our hypothesis concerned two events: feed-
back given just prior to a decision to exploit/explore (trial N-1), and the
choice stimuli that are exploited/explored (trial N). Below we describe
how we quantified ERPs for these two events.

5.5.3. Feedback-Locked ERPs
To quantify the reward positivity, we averaged the feedback-locked

EEG for each participant, channel, feedback condition (win/loss), and
decision type (exploit/explore). We then constructed difference wave-
forms by subtracting the average loss waveforms from the average win
waveforms (Krigolson, 2017). To identify a window of analysis, we
constructed a “grand-grand” average difference waveform (Kappenman
and Luck, 2016) by collapsing across both participant and decision type
(exploit/explore). We then identified a window of interest by locating
the peak of this difference waveform (maximum voltage, across all
timepoints and scalp locations), and chose as a half-interval the time on
the leading edge of the peak at which 75% of the maximum voltage was
reached. Thus, the reward positivity was defined as the mean voltage
from 240 to 296ms post feedback at electrode Cz (See Fig. 3). A reward
positivity score was computed for each participant and decision type
(pre-exploit/pre-explore). A similar procedure was followed for the
P300, except that the grand-grand average also collapsed across feed-
back type (i.e., it was the average response to all feedback). The peak of
the P300 was defined as the maximum positive deflection, across all
timepoints and scalp locations, and the half-interval was defined as the
point on the leading edge of the waveform at which 75% of the max-
imum voltage was reached. This resulted in a P300 defined as the mean
voltage from 308 to 420ms post feedback at electrode POz (see Fig. 4).
Thus, a P300 score was computed for each participant, feedback type
(win/loss), and decision type (pre-exploit/pre-explore).

5.5.4. Choice-Locked ERPs
Preceding a decision to exploit or explore, participants were shown

the choice stimuli, or bandits. To analyze the ERPs locked to the ban-
dits, we averaged the choice-locked EEG for each channel and decision
type (exploit/explore), for each participant. Only trials with valid be-
havioral responses were included. To identify the P300 time range, we
followed a similar procedure as for the feedback-locked analysis; we

collapsed across all participants and conditions (exploit/explore) and
found the time/location of greatest voltage. We then took 75% of the
leading edge as the half interval. This resulted in a P300 defined as the
mean voltage from 312 to 392ms post bandits at electrode POz (i.e., a
P300 score for each participant and decision type). Our N200 analysis
was exploratory, as there was no obvious N200 peak at any anterior
electrode site that could be identified when we collapsed across deci-
sion type. Instead, we identified the time/location of the greatest dif-
ference between our average explore waveform and our average exploit
waveform. An interval from 196 to 244ms post bandits at electrode FC3
was identified as the time/location of greatest difference (i.e., where
the 95% confidence intervals of the difference wave did not overlap
with zero). There are two caveats to this exploratory analysis. First, our
N200 definition was biased because it was defined using our conditions
of interest (exploit/explore). Second, this time range overlapped with a
centrally-located P200 ERP (although the difference was maximal at a
frontal site – see Fig. 5).

5.5.5. Single-Trial analysis
To further investigate the relationship between the feedback-locked

P300 and an upcoming decision to exploit or explore, we computed a
single-trial EEG analysis. A P300 score was generated for each parti-
cipant and trial using the same procedure as in our feedback-locked
ERP analysis (i.e., we averaged the post-feedback voltage from 308 to
420ms at electrode POz). We then calculated, for each participant, a
regression line relating the trial-by-trial P300 score to the softmax
probability of the upcoming trial decision. If exploration is associated
with greater P300 scores, then we ought to see a negative relationship
between P300 magnitude and softmax probability. (Recall that we de-
fined exploration as a decision with a less-than-maximal softmax
probability; thus, less-likely decisions ought to be preceded by larger
P300s).

5.5.6. Inferential statistics
The existence of a reward positivity, defined as a difference score,

was tested using a single-sample t-test (Holroyd and Krigolson, 2007;
Rodrıǵuez-Fornells, et al., 2002). Between decision conditions (pre-
exploitation, pre-exploration) the reward positivity’s were compared
using a paired samples t-test. The feedback-locked P300 was analyzed
using a 2 (feedback: win, loss) by 2 (decision type: pre-exploit, pre-
explore) repeated-measures ANOVA. The choice-locked N200 scores
were compared using a paired-samples t-test, as were the choice-locked
P300 scores. Finally, participant slopes in our single-trial analysis were
compared against zero with a single-sample t-test. For all t-tests, we
computed Cohen’s d according to:

d M
s

diff

diff
=

where Mdiff was the difference score mean and sdiff was the difference
score standard deviation (or in the case of the reward positivity, the
mean and standard deviation of the ERP score itself; see Cumming,
2014). For the ANOVA, we computed two different effect-size mea-
sures: ηp2 and ηg2 (Lakens, 2013; Olejnik and Algina, 2003).
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Appendix

See Fig. A1.

Fig. A1. Relationship between each participant’s trial-to-trial P300 and the model-generated likelihood (softmax) of the upcoming decision.
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