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In recent years there has been an increase in the number of portable low-cost

electroencephalographic (EEG) systems available to researchers. However, to date the

validation of the use of low-cost EEG systems has focused on continuous recording of

EEG data and/or the replication of large system EEG setups reliant on event-markers

to afford examination of event-related brain potentials (ERP). Here, we demonstrate that

it is possible to conduct ERP research without being reliant on event markers using a

portable MUSE EEG system and a single computer. Specifically, we report the results

of two experiments using data collected with the MUSE EEG system—one using the

well-known visual oddball paradigm and the other using a standard reward-learning

task. Our results demonstrate that we could observe and quantify the N200 and P300

ERP components in the visual oddball task and the reward positivity (the mirror opposite

component to the feedback-related negativity) in the reward-learning task. Specifically,

single sample t-tests of component existence (all p’s < 0.05), computation of Bayesian

credible intervals, and 95% confidence intervals all statistically verified the existence of

the N200, P300, and reward positivity in all analyses. We provide with this research paper

an open source website with all the instructions, methods, and software to replicate our

findings and to provide researchers with an easy way to use the MUSE EEG system for

ERP research. Importantly, our work highlights that with a single computer and a portable

EEG system such as the MUSE one can conduct ERP research with ease thus greatly

extending the possible use of the ERP methodology to a variety of novel contexts.

Keywords: EEG, ERP, portable electronics, cognitive science, executive function

INTRODUCTION

In recent years there has been an almost explosive growth of low-cost (i.e., less than $500 USD)
electroencephalographic (EEG) recording systems. While most of the systems on the market offer
software developer kits allowing scientists to access the raw data for research purposes—only a
small amount of work has been done to validate the effectiveness of these systems for event-related
brain potential (ERP) research (e.g., Debener et al., 2012; Badcock et al., 2013; Duvinage et al.,
2013; Gramann et al., 2014; Wascher et al., 2014; Badcock et al., 2015; Maskeliunas et al., 2016;
Kuziek et al., 2017). Indeed, research to date has focused on the replication of a large array EEG
setup in which event-markers are used to temporally synchronize the EEG data to events of
interest (Debener et al., 2012; Vos et al., 2014) or temporal synchronization of time stamps between
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computers to determine when events occur (Wong et al., 2014).
Further, the majority of portable EEG studies to date have relied
on electrode caps or full coverage electrode arrays which also
negates the use of these systems in certain environments and
increases the difficulty of participant setup—something that at an
inherent level takes away from the portability and ease of use of
these systems.

From a technical perspective, the ERP methodology is
difficult to implement in low-cost non-standard research grade
equipment for several reasons. First and foremost, there is the
issue of data quality and whether low-cost systems can deliver
sampling rates (i.e., >= 250Hz) and data quality (i.e., noise
free, a small number of artifacts) conducive for traditional ERP
analyses. Two other key issues that are a cause for concern relate
to the issue of experimental timing: first, how one can “mark”
the data for subsequent ERP analysis, and second, the issue of
non-standard electrode locations for analysis—ERP components
are typically associated with analysis of specific electrode
locations.

When designing and implementing ERP experiments, it is of
key importance that steps be taken to assure that the highest
quality of data is recorded. Specifications to enhance the quality
of data collection were specifically highlighted in the seminal
Picton paper (Picton et al., 2000; see also Luck, 2014) in which
issues such as electrode type, electrode quality (e.g., Coles et al.,
1986; Kutas, 1997), the minimum number of electrodes necessary
for meaningful interpretation (e.g., Srinivasan et al., 1998), and
the capabilities of the amplifier (e.g., Cadwell and Villarreal,
1999) were stated to specifically increase data quality and thus
the ability to draw meaningful conclusions from EEG/ERP data.
Amplifier characteristic such as the number of bits available for
the converter (8 minimum), the gain of the amplifier, and the
common-mode rejection ratio were also stated in the Picton
paper (Picton et al., 2000) to have minimum values necessary to
achieve sufficient EEG data quality. As such, an obvious concern
with the use of low-cost EEG systems is whether the actual
hardware meets the standards needed to achieve sufficient EEG
data quality (e.g., quality of the electrodes on a low-cost EEG
system). Indeed, if the minimum standards set out in the Picton
paper (and in other sources) are notmet in a low-cost EEG system
it suggests that these systems will not be able to provide EEG
data of sufficient quality for meaningful interpretation. While we
agree that all the concerns that have bene outlined in the Picton
paper (and other sources) are valid, a more meaningful test of
data quality is rather straightforward—collect data from a low-
cost system and directly determine whether said EEG system
can provide data that reliably results in visible and statistically
quantifiable ERP components. Indeed, the existing studies that
have examined the efficacy of portable, low cost EEG systems for
ERP research suggest that it is possible to collect data of sufficient
quality for ERP analyses (e.g., Debener et al., 2012; Vos et al.,
2014).

Another key issue that occurs when using a low-cost EEG
system for ERP research relates to the issue of event timing.
Typically, in an ERP paradigm an event marker is sent from
a stimulus computer to a recording computer via a parallel or
TTL cable to “mark” the data. Importantly, marking the data

in this manner affords the ability to precisely extract epochs
of data centered on the onset of events of interest and thus
allows the researcher to create event-related average waveforms
for subsequent analysis (Coles et al., 1986; Luck, 2014). To date,
studies using portable EEG systems have attempted to mirror
this procedure (Debener et al., 2012; Vos et al., 2014) or have
attempted to use temporal synchronization to obtain precise
event timing (Wong et al., 2014). Here, we take a different
approach to event-timing and directly record EEG data after each
event thus negating the need to mark the continuous EEG data.
While we appreciate there is temporal jitter in the data due to
this approach in addition to timing variability due to Bluetooth
communication (see methods) these temporal inconsistencies are
Gaussian in nature and should average out during data analysis to
yield reliable ERP components.

A final issue that relates to the use of portable, low cost EEG
systems is the potential that electrode channels are not available
in locations that are associated with specific ERP components.
Typically, researchers seek to analyze specific electrode channels
for specific ERP components—channels where the ERP
component is maximal and has been reported before (Rugg and
Coles, 1995; Luck, 2014). Here, we hypothesized that ERPs could
be recorded with a MUSE system in a dramatically more efficient
way at a fraction of the cost making the trade-off between
electrode location and ease of use worthwhile. Indeed, after an a
priori analysis of pilot data, we decided to simply analyze ERP
components at non-standard locations. For example, while the
P300 ERP component is typically maximal at posterior locations
on the midline we did not have an electrode(s) at this location
and as such we were forced to analyze the P300 component at
electrode locations that we did have (here, electrodes TP9 and
TP10). While obviously our solutions to this issue is not ideal,
the purpose of the present research was to demonstrate that a
low-cost EEG system could be used to conduct ERP research and
thus we “worked with what we had.”

In the present experiment we specifically sought to test
whether or not the MUSE EEG system (InterAxon Inc.) could
be used to quickly collect EEG data that would yield observable
and quantifiable ERP components without the use of event-
markers—specifically the N200, P300, and reward positivity (also
known as the feedback related negativity: see Proudfit, 2015
for review). The N200 and P300 ERP components have been
shown to be sensitive to stimulus frequency and are typically
evoked via the oddball paradigm (e.g., Squires et al., 1975).
The reward positivity is typically defined as a difference in
between feedback locked ERP waveforms indicating wins and
losses or correct and incorrect trials and is thought to reflect a
reinforcement learning system within the medial-frontal cortex
(e.g., Holroyd and Coles, 2002). All three components were
chosen as they are typically quite large (in terms ofµV effect size)
and between the three of them index a wide range of cognitive
and perceptual phenomena. To validate the effectiveness of the
MUSE system for ERP research, we collected MUSE EEG data
while 60 participants performed both an oddball and a reward-
learning task on a laptop computer. For comparison purposes,
we randomly selected the data from a matched number of
participants who had performed these same two tasks while EEG
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data was recorded on a Brain Vision ActiChamp system with a
standard 10–20 electrode configuration.

Our hypothesis was simple—we predicted that we would be
able to see and quantify the N200, P300, and reward positivity
in the EEG data we collected with the MUSE system without
having to be reliant on event-markers. Further, we predicted that
a comparison of the “MUSE components” with ERP components
observed in a reduced analysis pipeline (see below) from our
large array system would reveal that the two sets of components
from different EEG systems were the same. Finally, we note
here that one of the principle reasons we sought to test the
MUSE EEG system in this manner was to develop a portable
and efficient method of measuring the aforementioned ERP
components for field and/or clinical research. As such, we
deliberately collected aminimal amount of data—our goal, which
we accomplished, was for EEG setup and data collection to be
finished in under 10min.

METHODS

Participants
Undergraduate students (n = 60; MUSE group, 34 female,
mean age: 21) from the University of Victoria participated
in the experiment using the MUSE portable EEG system
(SCR_014418). For comparison purposes, we randomly selected
60 undergraduate participants (Standard/Reduced group: 34
females, mean age: 20.9 years) from the University of Victoria
from an existing long-term project in our laboratory as
a comparison group for analysis purposes. Participants in
this “standard/reduced group” had performed the same two
experimental tasks as the MUSE group but instead their
EEG data was collected using a Brain Vision ActiChamp
System with a standard 10-10 electrode configuration and a
typical EEG set-up (stimulus machine, recording machine, etc.).
All participants had normal or corrected-to-normal vision,
no known neurological impairments, volunteered for extra
course credit in a psychology course and provided written
informed consent approved by the Human Research Ethics
Board at the University of Victoria. The study followed
ethical standards as prescribed in the 1964 Declaration of
Helsinki.

Apparatus and Procedure
Standard Group
Participants in the standard group were seated in a sound
dampened room in front of a 19′′ LCD computer monitor and
used a standard USB mouse to complete the two experimental
tasks - a visual oddball task and a reward-learning task—while
EEG data were recorded via an ActiChamp system (see Figure 1
for a time line for both tasks—the tasks themselves are described
below). The experimental tasks were coded in MATLAB
programming environment (Version 8.6, Mathworks, Natick,
U.S.A.) using the Psychophysics Toolbox extension (Brainard,
1997).

During performance of the oddball task participants saw a
series of blue (MATLAB RGB value = [0 0 255]) and green
(MATLAB RGB value = [0 255 0]) colored circles that appeared

FIGURE 1 | The experimental trial time line for both tasks.

for 800–1,200 ms in the center of a dark gray screen (MATLAB
RGB value = [108 108 108]). Prior to the onset of the first circle
and in between the presentation of subsequent circles a black
fixation cross was presented for 300 to 500ms (MATLAB RGB
value = [0 0 0]). Participants were not told that the frequency of
the blue and green circled differed: the blue circles appeared less
frequently (oddball: 25%) than the green circles (control: 75%)
with the sequence order of presented circles being completely
random. Participants were instructed to mentally count the
number of blue circles (oddballs) within each block of trials.
Participants completed 3 blocks of 40 trials during performance
of the oddball task.

On each trial of the reward-learning task participants viewed
a black fixation cross (MATLAB RGB value = [0 0 0]) for
300 to 500 ms that was followed by a blue and a green pair
squares (MATLAB RGB values = [0 0 255] and [0 255 0],
respectively). Participants were asked on each trial to select one
of the two squares. Following the selection of a square, the
black fixation cross (MATLAB RGB value = [0 0 0]) reappeared
for 300 to 500 ms following which a reward stimulus in black
(“$” for wins, “0” for losses) (MATLAB RGB values = [0 0 0])
was shown for 1,000 ms. Immediately following the offset of
the feedback stimulus the next experimental trial began. The
reward structure of the squares was such that selection of
one of the square colors resulted in more frequent wins than
the other (60 vs. 10% win/loss ratio). The location of each
square (left, right) was randomly determined each trial and
the win/loss percentage to color relationship remained constant
for each block of trials. Participants completed 5 blocks of 20
trials and unique square colors were used for each block of
trials.
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MUSE Group
The oddball and reward-learning tasks that participants
performed in the MUSE group were identical except for a few
minor differences. The tasks were performed in a quiet room
on a 11′′ MacBook Air laptop (Apple Inc., California, USA)
with participants wearing a MUSE EEG headband. Importantly,
although the monitor size was reduced, the stimuli sizes were
adjusted to be the same as the standard task. Participants
responded via the “a” and “l” keys on the laptop keyboard.

Data Acquisition
Standard Group
EEG data in the standard group were recorded using Brain
Vision Recorder software (Version 1.21, Brainproducts, GmbH,
Munich, Germany) and 64 electrodes that were mounted
in a fitted cap with a standard 10-10 layout (ActiCAP,
Brainproducts GmbH, Munich, Germany: the specific cap
layout is available here http://www.neuroeconlab.com/electrode-
configuration.html). Electrodes on the cap were initially
referenced to a common ground. On average, electrode
impedances were kept below 20 k�. The EEG data were sampled
at 500 Hz, amplified (ActiCHamp, Revision 2, Brainproducts
GmbH, Munich, Germany), and filtered through an antialiasing
low-pass filter of 8 kHz. To ensure temporal coincidence of event-
markers with experimental stimuli a DATAPixx stimulus unit was
used (VPixx, Vision Science Solutions, Quebec, Canada).

MUSE Group
EEG data in the MUSE group were recorded from a
MUSE EEG headband with research preset AD (500Hz
sampling rate, no onboard data processing: InteraXon,
Ontario, Canada) (see http://developer.choosemuse.com/
hardware-firmware/hardware-specifications for full technical
specifications). The MUSE EEG system has electrodes located
analogous to Fpz, AF7, AF8, TP9, and TP10 with electrode Fpz
utilized as the reference electrode. Using the muse-io SDK we
streamed data from the MUSE EEG system directly to MATLAB
via the open sound control (OSC) protocol (see http://www.
neuroeconlab.com/muse.html for all configuration, setup, and
acquisition methods and software). In essence, following the
presentation of each experimental stimulus of interest we directly
sampled 1,000 ms of streaming data into MATLAB—subject
to a small, varying inherent timing lag due to the Bluetooth
connection (see http://developer.choosemuse.com/protocols/
data-streaming-protocol). We tested the latency and variability
of the latency of the Bluetooth EEG data stream by sending a
series of 5000 TTL pulses into the MUSE auxiliary port from
MATLAB and measuring the time it took for these pulses to
“return” and be visible in the sampled EEG data. This test
demonstrated a mean lag of 40 ms (±20 ms). It is important
to note that this time includes the transmission time of the
TTL pulse to the MUSE, the time back from MUSE system
via Bluetooth, the conversion to an osc format via muse-io
(the MUSE SDK software), and time needed to read the osc
message stream into MATLAB. We also note here, however,
this variability was in part due to a few samples (n < 10) with
extreme latencies.

Data Processing
Standard Analysis
Data were processed offline with Brain Vision Analyzer 2
software (Version 2.1.1, Brainproducts, GmbH, Munich,
Germany) using methods we have previously employed
(see http://www.neuroeconlab.com/data-analysis.html). First,
excessively noisy or faulty electrodes were removed. The ongoing
EEG data were re-referenced to an average mastoid and then
filtered using a dual pass Butterworth filter with a passband
of 0.1 Hz to 30 Hz in addition to a 60 Hz notch filter. Next,
segments encompassing the onset of each event of interest (1,000
ms before to 2,000 ms after) were extracted from the continuous
EEG. Following segmentation, independent component analysis
was used to correct ocular artifacts (Delorme and Makeig, 2004;
Luck, 2014). Data were reconstructed after the independent
component analysis and any channels that were removed
initially were interpolated using the method of spherical splines.
New, shorter epochs were then constructed—from 200 ms before
to 600 ms after the onset of each event of interest. In the oddball
task, these events were the onset of the oddball and control circle
stimuli; in the reward-learning task, these events were the onset
of the win and loss feedback stimuli. Following this, all segments
were baseline corrected using a 200 ms window preceding
stimulus onset. Finally, all segments were submitted to an artifact
rejection algorithm that marked and removed segments that had
gradients of greater than 10 µV/ms and/or a 100 µV absolute
within segment difference.

For each participant and event of interest, ERP waveforms
were created by averaging the segmented EEG data for each
electrode. Subsequently, a difference waveform was created by
subtracting the control waveforms from the oddball waveforms in
the oddball task and the loss waveforms from the win waveforms
in the reward-learning task. For each conditional and difference
waveform, a grand average waveform was created by averaging
corresponding ERPs across all participants. ERP components of
interest were quantified by first identifying the time point of
maximal deflection from 0µV on the appropriate grand average
difference waveform in the time range of the component at
the channel where this deflection was maximal (N200: 236 ms;
P300: 397 ms; reward positivity: 301 ms)—with the channel also
being verified to be inline with previous literature (N200: Pz;
P300: Pz, reward positivity: FCz). All peaks were then quantified
on an individual basis by taking the mean voltage ±25 ms of
the respective time points on the respective channels for each
participant.

Reduced Analysis
To afford a better ERP component comparison with the MUSE
group a second “reduced analysis” was conducted on the data
from the standard group again with Brain Vision Analyzer 2
software. First, all channels except for Fpz, AF7, AF8, TP9, and
TP10 were removed from all subsequent analysis steps. Next,
the continuous EEG data were re-referenced to electrode Fpz
electrode and this electrode was then also removed to replicate
the data we recorded from the MUSE EEG system. Data was
then left referenced to FPz for the analysis of oddball data or
re-referenced to the average of electrodes TP9 and TP10 for
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the analysis of the reward-learning data. Data were then filtered
with a dual pass Butterworth filter with a passband of 0.1 Hz to
15 Hz1 in addition to a 60 Hz notch filter. The data was then
segmented from the onset of the stimulus of interest to 600 ms
after. Next, a baseline correction was applied to each segment
using a window from 0 to 50ms—awindow that was chosen as we
did not record EEG data prior to stimulus onset with the MUSE
system. An artifact rejection algorithm was then implemented; as
a result of this procedure segments that had gradients of greater
than 10 µV/ms and/or an absolute difference of more than 100
µV were discarded. The segmented data were then separated
by experimental condition for each of the two tasks (oddball
task: oddball, control; reward-learning task: win, loss). For the
oddball task electrodes TP9 and TP10 were then pooled and
event-related potential averages were created for each condition
(oddball, control). For the reward-learning task electrodes AF7
and AF8 were then pooled and event-related potential averages
were created for each condition (win, loss). Finally, a difference
waveform was created by subtracting the control waveforms
from the oddball waveforms in the oddball task and the loss
waveforms from the win waveforms in the reward-learning
task. For each conditional and difference waveform, a grand
average waveform was created by averaging corresponding ERPs
across all participants. ERP components were extracted and
quantified in the same manner as the standard analysis, however
obviously enough only on the pooled channel. The grand average
component peak times were 233 ms for the N200, 339 ms for the
P300, and 293 ms for the reward positivity.

MUSE Analysis
TheMUSE EEGwas processed identically to the reduced analysis
above; however, first—we had to convert the MUSE data into
a format suitable for analysis in Brain Vision Analzer (this
software is available at http://www.neuroeconlab.com/muse-
analysis.html). Following the analysis of the MUSE data, the ERP
components of interest were quantified in amanner also identical
to the reduced analysis. Due to the timing lag inherent with the
Bluetooth connection, the MUSE grand average difference peak
times lagged and thus were slightly different (N200: 260ms, P300:
381ms, reward positivity: 297 ms) from the reduced analysis peak
times.

Data Analysis
For all analyses (standard, reduced, MUSE), the same statistical
procedures were used. For each component (N200, P300,
reward positivity) analyses were conducted on the mean peak
amplitudes extracted from the difference waves. To confirm
the differences between conditions of each component, we
compared the mean peak difference data to zero using
three statistical methods: 95% confidence intervals, t-tests
(α = 0.05), and 95% highest density Bayesian credible
intervals.

1We used a lower top end on the bandwidth filter as we expected the data from

the MUSE to be noisier than that of our ActiChamp system. Further, the ERP

components of interest here (N200, P300, reward positivity) are all characterized

by a frequency composition of less than 15Hz.

RESULTS

Our analyses of the grand average difference waveforms revealed
components with a timing consistent with the N200, P300, and
reward positivity for all analyses (see Figures 2–4). Furthermore,
all statistical tests determined that there was indeed a difference
in all component peaks as a function of experimental condition
for all analyses (see Figure 5 and Supplementary Figure 1).

FIGURE 2 | Conditional waveforms for the oddball task. Top: standard

analysis (electrode Pz), middle: reduced analysis (pooled electrode TP9 &

TP10), bottom: MUSE analysis (pooled electrode TP9 & TP10). Shaded

regions reflect 95% confidence intervals around the grand average waveform.
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FIGURE 3 | Conditional waveforms of the reward learning task. Top:

standard analysis (electrode FCz), middle: reduced analysis (pooled electrode

AF7 & AF8), bottom: MUSE analysis (pooled electrode AF7 & AF8). Shaded

regions reflect 95% confidence intervals around the grand average waveform.

Oddball Task: N200
Our analysis of the standard data revealed that oddball stimuli
elicited a difference in the amplitude of the N200 relative to
control stimuli in line with previous findings (Md = 3.75
µV [2.64 µV 4.87 µV], t(59) = 6.76, p < 0.0001, Bayesian
HDI: µ = 3.72 µV [2.57 µV 4.83 µV]). Our reduced
analysis demonstrated a similar, but reversed effect, relative
to the standard analysis—oddball stimuli elicited a more
positive voltage in the N200 time range than control stimuli

(Md =−5.63µV [−6.81 µV −4.44 µV], t(59) = −9.51, p
< 0.0001, Bayesian HDI: µ = −5.57 µV [−6.76 µV −4.43
µV]). Importantly, our analysis of the MUSE data revealed
a component that was identical to the N200 observed in the
reduced analysis (Md =−4.85 µV [−5.95 µV −3.76 µV], t(59)
= −8.89, p < 0.0001, Bayesian HDI: µ = −4.80 µV [−5.91 µV
−3.69 µV]).

Oddball Task: P300
Our analysis of the standard data revealed that oddball stimuli
elicited a difference in the amplitude of the P300 relative to
control stimuli in line with previous findings (Md = 10.47 µV
[8.98 µV 11.97 µV], t(59) = 14.00, p < 0.0001, Bayesian HDI:
µ = 10.41 µV [8.87 µV 11.90 µV]). As with the N200, our
reduced analysis also revealed a difference in the amplitude of
the P300 between the oddball and control stimuli—and yet again
it was reversed in polarity (Md = 1.98 µV [0.43 µV 3.53 µV],
t(59) = 2.55, p = 0.0132, Bayesian HDI: µ = 1.91 µV [0.36 µV
3.48 µV]). Again, our analysis of the MUSE data revealed a P300
component that was for all practical purposes identical to the
component we observed in the reduced analysis (Md = 1.37 µV
[0.39 µV 2.35 µV], t(59) = 2.80, p = 0.0069, Bayesian HDI: µ =

1.36 µV [0.36 µV 2.36 µV]).

Reward-Learning Task: The Reward
Positivity
Our standard analysis revealed that the “win” stimuli in the
reward-learning task differentially modulated the amplitude of
the reward positivity relative to “loss” stimuli—a result in line
with previous findings (Md = 5.67 µV [4.51 µV 6.82 µV], t(59)
= 9.83, p < 0.0001, Bayesian HDI: µ = 5.58 µV [4.40 µV 6.75
µV]). The reduced analysis found an effect that was similar to
the standard analysis (Md = 3.52 µV [2.21 µV 4.84 µV], t(59) =
5.36, p< 0.0001, Bayesian HDI:µ= 3.45µV [2.14µV 4.76µV]),
and the MUSE analysis revealed a similar effect to the reduced
analysis (Md = 2.57 µV [1.58 µV 3.57 µV], t(59) = 5.19, p <

0.0001, Bayesian HDI: µ = 2.32 µV [1.38 µV 3.30 µV]).

Additional Analyses
To test the reliability of ERP data collection with MUSE, we
also conducted a resampling analysis in which we computed the
percentage of significant statistical tests for 10,000 samples of
the data with sample sizes ranging from 2 to 60 for each of our
two groups and three analysis procedures—standard, reduced,
MUSE. The results of this analysis are presented in Figure 6 and
demonstrate that for the N200 and reward positivity a sample size
of 10 is more than sufficient to achieve reliable results. However,
for the P300 component we found that for the reduced and
MUSE groups this sample size was greater—perhaps due to a
greater the attenuation of this ERP component at the electrode
sites that we used to quantify it, TP9 and TP10.

DISCUSSION

The results presented here clearly demonstrate that the MUSE
EEG system can be used to conduct event-related brain potential
(ERP) research from a single computer without the use of
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FIGURE 4 | Difference waveforms of the reduced and MUSE analysis for both tasks. Left: oddball task, right: reward learning task. Difference waveforms

were created by subtracting the control condition from the oddball condition for the oddball task, and the loss condition from the win condition for the decision making

task. Shaded regions reflect 95% confidence intervals around the grand average waveform.

FIGURE 5 | Mean amplitudes with 95% confidence intervals of the N200 (left), P300 (middle), and reward positivity (right) for the standard, reduced,

and MUSE analyses. Mean amplitudes were calculated by averaging 25 ms surrounding the respective peaks.

FIGURE 6 | Resampling analysis to test the minimum number of participants needed to achieve statistical significance reported as the percent of

significant-tests (p < 0.05) out of 10,000. The dashed horizontal line is placed at 95%.

event-markers. Specifically, in two separate tasks, a visual oddball
task and a reward-learning task, we demonstrated that the
data we collected with MUSE EEG system yielded the N200,
P300, and reward positivity components. A resampling analysis
implemented post-hoc (see Figure 6) clearly demonstrates as well
that one can measure reliable ERP components with MUSE

(especially the N200 and reward positivity) with a minimal
number of participants. Further, we note there that the time to
complete both experimental tasks—including EEG setup—was
done, on average, in less than 10 min. For comparison purposes,
one must consider the task completion time with our large array
ActiChamp system. On average, two skilled research assistants
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took 35 min to affix an electrode cap, 64 electrodes, apply gel,
and get electrode impedances within an acceptable range. While
the task time remained the same, post experiment it took the two
research assistants 15 min to clean up bringing the total testing
time to 60 min, on average. As such, the setup time and testing
time with the MUSE was approximately one sixth of the setup
and testing time with our large array system. Other points to
consider here are the fact that large array systems typically require
two (or more) research assistants vs. one with our MUSE setup
and cost considerably more approximately $75,000 vs. $250 for
the MUSE system (see Table 1).

The data collected here provide further support for the use
of low-cost, portable EEG systems such as the MUSE for field
research (i.e., Debener et al., 2012). Our work however, further
extends the portability and ease of use aspects of previous work
given that we were able to collect two complete experiments
(including setup) in 10min, we were able to do this with a single,
small laptop computer, and further we were able to move away
from the traditional use of event-markers. To some extent, our
approach replicated previous work (Vos et al., 2014; Wong et al.,
2014) but our technique greatly improves the portability and ease
of use of mobile ERP data collection. Our work here increases the
ability of researchers to collect EEG data in clinical settings and
out in the “real world.” Furthermore, given the low cost of the
MUSE and its ease of use, the MUSE system affords the ability to
collect large numbers of participants simultaneously with relative
ease. With that said, there are some key concerns that researchers
need to be aware of when using a portable EEG protocol such as
the one presented here.

Data Quality
Perhaps the biggest difficulty that was faced in the present
study was setting up participants with the MUSE headband
for data collection. Indeed, during our pilot work our research
assistants initially had trouble obtaining a sufficient level of
data quality from the MUSE system. But, for the most part,
this lost data was due to an inability of the research assistants
to achieve a sufficient connection between the EEG headband
and the respective electrode scalp locations during setup—which
we restricted on purpose to 5min after which we began the

TABLE 1 | EEG System Comparison.

Number of Number of Sampling Testing Cost

EEG AUX inputs rate timea (min) (USD)

channels

actiCHamp 32–160 8b Up to 100 KHz 60 $77,100

Muse (2014

version)

5 2c 220 Hz or 500 Hzd 10 $249

aThese are average testing times for the current study, and include setup, task time, and

cleanup.
bAdditional sensors for GSR, EOG, EMG, ECG, respiration, acceleration, temperature,

blood pulse, light (photosensor), or sound (microphone) may be used.
cEMG, ECG, or EEG electrodes may be attached via two micro-USB ports (one port for

the 2016 version).
dThe 2016 version samples at 256Hz.

experiment anyways. One thing we note here, was that certain
head shapes, head sizes, and hair styles made data collection
difficult—a factor that needs to be considered when designing
ERP studies with portable EEG systems such as the MUSE. With
that said, once our research assistants gained a sufficient level of
experience with the MUSE system our ratio of lost participants
dropped to one out of twenty, a number that is in line with
ERP studies done with large array EEG systems. Further, a quick
inspection of the MUSE website reveals tutorials and support
videos that will help future researchers learn to quickly and
properly put a MUSE headset on participants.

To improve our ability to assess data quality during setup
and the course of the experiment, we wrote a MATLAB script
that showed the raw EEG in real-time to the research team.
Importantly, our software also showed the variance of the EEG
signal for each channel per second (Note, all of the MATLAB
code we used is publically available at: http://www.neuroeconlab.
com/muse-data-collection.html).We found through pilot testing
that if we could minimize the variance of a given channel (less
than 150 uV2/s) then the number of lost trials was minimal
(expect for blinks and other typical EEG artifacts, of course).
Finally, we note that we deliberately chose a very short data
collection window—our oddball task lasted 180 s - to emphasize
the portability of our approach for field/clinical research. If we
had of collected data for a longer period of time by extending the
duration of both tasks by adding more trials then we would also
have lost fewer participants in our post-experiment analysis of the
EEG data.

Event Markers and Marker Timing
The ability to insert temporally accurate “markers” to yoke
experimental stimuli to continuous EEG data has long been
considered to be of critical importance when conducting ERP
studies (Luck, 2014). Previous work with portable EEG systems
has also sought to mark the data, either directly (Debener et al.,
2012; Vos et al., 2014) or via temporal event synchronization
(Wong et al., 2014). Here, as we noted previously, we chose not
to mark the EEG data and instead we simply recorded segments
of EEG data that were streamed from the MUSE to a laptop
computer after each trial. Of course, we are aware that due to
varying time lags inherent with the Bluetooth data connection
and because we have a lack of experimental event markers there
is considerable timing “jitter” in our EEG data (see Shorey and
Miller, 2000). Specifically, one typically finds that Bluetooth has
a lag of 18 to 20 ms with a jitter of approximately 5ms (see
Luque et al., 2012). However, our results clearly demonstrate
that this does not matter if one simply wants to quantify ERP
components—our data that we collected with the MUSE EEG
system clearly revealed N200, P300, and reward positivity ERP
components. To be fair, it is worth noting that our approach may
be unsuitable for subtle within manipulations—further work is
needed to address this concern.

Practically speaking, the random delays in the temporal onset
of our data collection would have a Gaussian distribution and
thus the lags would average out—indeed therefore our MUSE
ERP components look so like the ones we observed with the
reduced analysis. Further, while the timing onset via Bluetooth
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is not “guaranteed”—the order of data packets is (https://www.
bluetooth.com/; Bray and Sturman, 2001), and as such, the
averaging of temporal onset did not impact the present data as
badly as we initially feared it might. Finally, we have written
MATLAB code that allows two-way communication via the OSC
protocol to send markers to mark a continuous EEG recording—
however, these OSC markers would be susceptible to the same
varying time lags as our direct recording protocol. In any case, the
use of portable EEG systems does not preclude a protocol within
which continuous EEG data is recorded and marked in a manner
common to most ERP studies. However, as we have previously
noted we deliberately sought here to move away from reliance on
event-markers.

Use of Non-standard Electrode Locations
One consequence of using a portable EEG system such as the
MUSE for ERP research is that the researcher has to accept that
they will most likely be working with non-standard electrode
locations for given ERP components. For example, for the two
experimental tasks we employed here one would typically have
focused offline analyses on electrodes Pz (the oddball task) and
FCz (the reward-learning task) as opposed to on a pooled average
of electrodes TP9 and TP10. However, we did not have electrodes
at either Pz or FCz and as such we were forced to work with
a pooled average of electrodes TP9 and TP10 for the oddball
task and a pooled average of electrodes AF7 and AF8 for the
reward-learning task.

With this in mind, the three ERP components that we
observed (N200, P300, reward positivity) did not look like they
typically do (see Figures 1–3)—but they were clearly observable
and more importantly quantifiable in a reliable manner. We note
here the importance that we were able to quantify the N200,
P300, and reward positivity with a minimum number of trials
with a portable MUSE EEG system—researchers are now able
to measure these components quickly and reliably in the field
or in clinical environments with relative ease. The ability to
measure ERP components with a portable MUSE EEG system
that we demonstrate here with a single computer and without
the use of event-markers has the potential to greatly increase
the use of EEG and ERPs as a clinical diagnostic tool and/or to
allow greater use of EEG and ERPs in field research. In support
of this, we note here that we recently utilized the MUSE EEG
system to collect ERP data at Mount Everest Base Camp at an
altitude of 17,598 feet (Krigolson and Binsted, in preparation)
and in a hospital environment from medical students to assess
fatigue (Howse, Walzak, Wright, and Krigolson, in preparation).
Finally, we note that the MUSE system already has a large
consumer base that has successfully used self-guiding software

(i.e., the MUSE App). With this in mind, researchers could
potentially program experiments in the iOS or Android software
environments, distribute them via the respective App stores, and
potentially collect EG/ERP data from thousands of participants.

CONCLUSIONS

Improvements in the quality of low cost portable EEG systems
such as the MUSE provide an excellent opportunity for
researchers to improve their ability to conduct field and/or
clinical research. Here, we demonstrate that we were able to
quantify the N200, P300, and reward positivity ERP components
with a MUSE EEG system in two experimental paradigms that
together were completed in under 10 min. Our method utilized
a single computer and we did not have to rely on the use of
event-markers. We note here that all of the MATLAB code and
protocols for researchers to replicate and extend our research are
available on our laboratory website: http://www.neuroeconlab.
com/muse.html.

ETHICS STATEMENT

University of Victoria HREBWritten informed Consent.

AUTHOR CONTRIBUTIONS

OK was the principle investigator for this project. FC was in
charge of data collection and app development. AN and CH were
in charge of programming and theoretical development of the
project. CW was responsible for data analysis.

ACKNOWLEDGMENTS

We would like to thank Brianna Beaudry, Rose Leishmann, and
Jeff Zala for their work on this project as research assistants. The
work present was supported by Discovery (RGPIN 2016-0943)
and Engage (EGP 488711–15) Funding from theNational Science
and Engineering Research Council of Canada.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2017.00109/full#supplementary-material

Supplementary Figure 1 | Bayesian histogram plots for all analyses (top:

standard, middle: reduced, bottom: MUSE) and components (left: N200,

middle: P300, right: reward positivity). Black bars represent 95% highest

density intervals.

REFERENCES

Badcock, N. A., Mousikou, P., Mahajan, Y., de Lissa, P., Thie, J., and McArthur, G.

(2013). Validation of the Emotiv EPOC R© EEG gaming system for measuring

research quality auditory ERPs. PeerJ 1:e38. doi: 10.7717/peerj.38

Badcock, N. A., Preece, K. A., deWit, B., Glenn, K., Fieder, N., Thie, J., et al. (2015).

Validation of the Emotiv EPOC EEG system for research quality auditory

event-related potentials in children. PeerJ 3:e907. doi: 10.7717/peerj.907

Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436.

doi: 10.1163/156856897X00357

Bray, J., and Sturman, C. F. (2001). Bluetooth 1.1: Connect Without Cables. Upper

Saddle River, NJ: Prentice Hall.

Cadwell, J. A., and Villarreal, R. A. (1999). “Electrophysiologic

equipment and electrical safety,” in Electrodiagnosis in Clinical

Neurology, ed M. J. Aminoff (New York, NY: Churchill Livingstone),

15–33.

Frontiers in Neuroscience | www.frontiersin.org 9 March 2017 | Volume 11 | Article 109

https://www.bluetooth.com/
https://www.bluetooth.com/
http://www.neuroeconlab.com/muse.html
http://www.neuroeconlab.com/muse.html
http://journal.frontiersin.org/article/10.3389/fnins.2017.00109/full#supplementary-material
https://doi.org/10.7717/peerj.38
https://doi.org/10.7717/peerj.907
https://doi.org/10.1163/156856897X00357
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Krigolson et al. Portable EEG Technology for ERPs

Coles, M. G. H., Gratton, G., Kramer, A. F., and Miller, G. A. (1986). “Principles

of signal acquisition and analysis,” in Psychophysiology: Systems, Processes, and

Applications, eds M. G. H. Coles, E. Donchin, and S. W. Porges (New York, NY:

Guilford Press), 183–221.

Debener, S., Minow, F., Emkes, R., Gandras, K., and de Vos, M. (2012). How about

taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49,

1617–1621. doi: 10.1111/j.1469-8986.2012.01471.x

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis

of single-trial EEG dynamics including independent component analysis. J.

Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Duvinage, M., Castermans, T., Petieau, M., Hoellinger, T., Cheron, G., and

Dutoit, T. (2013). Performance of the Emotiv Epoc headset for P300-based

applications. Biomed. Eng. Online 12:56. doi: 10.1186/1475-925X-12-56

Gramann, K., Ferris, D. P., Gwin, J., and Makeig, S. (2014). Imaging

natural cognition in action. Int. J. Psychophysiol. 91, 22–29.

doi: 10.1016/j.ijpsycho.2013.09.003

Holroyd, C. B., and Coles, M. G. (2002). The neural basis of human error

processing: reinforcement learning, dopamine, and the error-related negativity.

Psychol. Rev. 109:679. doi: 10.1037/0033-295X.109.4.679

Kutas, M. (1997). Views on how the electrical activity that the brain generates

reflects the functions of different language structures. Psychophysiology 34,

383–398. doi: 10.1111/j.1469-8986.1997.tb02382.x

Kuziek, J. W., Shienh, A., and Mathewson, K. E. (2017). Transitioning EEG

experiments away from the laboratory using a Raspberry Pi 2. J. Neurosci.

Methods 277, 75–82. doi: 10.1016/j.jneumeth.2016.11.013

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, 2nd

Edn. Cambridge, MA: MIT Press.

Luque, J. R., Morón, M. J., and Casilari, E. (2012). Analytical and empirical

evaluation of the impact of Gaussian noise on the modulations employed by

Bluetooth Enhanced Data Rates. EURASIP J. Wireless Commun. Networking

2012:94. doi: 10.1186/1687-1499-2012-94

Maskeliunas, R., Damasevicius, R., Martisius, I., and Vasiljevas, M. (2016).

Consumer-grade EEG devices: are they usable for control tasks? Peer J 4:e1746.

doi: 10.7717/peerj.1746

Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R. et al.

(2000). Guidelines for using human event-related potentials to study cognition:

recording standards and publication criteria. Psychophysiology 37, 127–152.

doi: 10.1111/1469-8986.3720127

Proudfit, G. H. (2015). The reward positivity: from basic research on

reward to a biomarker for depression. Psychophysiology 52, 449–459.

doi: 10.1111/psyp.12370

Rugg, M. D., and Coles, M. G. (1995). Electrophysiology of Mind: Event-Related

Brain Potentials and Cognition. Oxford, UK: Oxford University Press.

Shorey, R., and Miller, B. A. (2000). “The Bluetooth technology: merits and

limitations. In Personal Wireless Communications,” in 2000 IEEE International

Conference on Multimedia and Expo – ICME2000 (Hyderabad), 80–84.

Squires, N. K., Squires, K. C., and Hillyard, S. A. (1975). Two varieties

of long-latency positive waves evoked by unpredictable auditory

stimuli in man. Electroencephalogr. Clin. Neurophysiol. 38, 387–401.

doi: 10.1016/0013-4694(75)90263-1

Srinivasan, R., Tucker, D. M., and Murias, M. (1998). Estimating the spatial

Nyquist of the human EEG. Behav. Res. Methods Instrum. Comput. 30, 8–19.

doi: 10.3758/BF03209412

Vos, M. D., Gandras, K., and Debener, S. (2014). Towards a truly mobile brain

computer interface: exploring the P300 to take away. Int. J. Psychophysiol. 91,

46–53. doi: 10.1016/j.ijpsycho.2013.08.010

Wascher, E., Heppner, H., and Hoffmann, S. (2014). Towards the

measurement of event-related EEG activity in real-life working

environments. Int. J. Psychophysiol. 91, 3–9. doi: 10.1016/j.ijpsycho.2013.

10.006

Wong, S. W. H., Chan, R. H. M., and Mak, J. N. (2014). Spectral

modulation of frontal EEG during motor skill acquisition: a mobile

EEG study. Int. J. Psychophysiol. 91, 16–21. doi: 10.1016/j.ijpsycho.2013.

09.004

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Krigolson, Williams, Norton, Hassall and Colino. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 10 March 2017 | Volume 11 | Article 109

https://doi.org/10.1111/j.1469-8986.2012.01471.x
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1186/1475-925X-12-56
https://doi.org/10.1016/j.ijpsycho.2013.09.003
https://doi.org/10.1037/0033-295X.109.4.679
https://doi.org/10.1111/j.1469-8986.1997.tb02382.x
https://doi.org/10.1016/j.jneumeth.2016.11.013
https://doi.org/10.1186/1687-1499-2012-94
https://doi.org/10.7717/peerj.1746
https://doi.org/10.1111/1469-8986.3720127
https://doi.org/10.1111/psyp.12370
https://doi.org/10.1016/0013-4694(75)90263-1
https://doi.org/10.3758/BF03209412
https://doi.org/10.1016/j.ijpsycho.2013.08.010
https://doi.org/10.1016/j.ijpsycho.2013.10.006
https://doi.org/10.1016/j.ijpsycho.2013.09.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research
	Introduction
	Methods
	Participants
	Apparatus and Procedure
	Standard Group
	MUSE Group

	Data Acquisition
	Standard Group
	MUSE Group

	Data Processing
	Standard Analysis
	Reduced Analysis
	MUSE Analysis

	Data Analysis

	Results
	Oddball Task: N200
	Oddball Task: P300
	Reward-Learning Task: The Reward Positivity
	Additional Analyses

	Discussion
	Data Quality
	Event Markers and Marker Timing
	Use of Non-standard Electrode Locations

	Conclusions
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


