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In anatomy education, a key hurdle to engaging in higher-level discussion in the
classroom is recognizing and understanding the extensive terminology used to identify
and describe anatomical structures. Given the time-limited classroom environment,
seeking methods to impart this foundational knowledge to students in an efficient
manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class
exercises (typically online) meant to establish foundational knowledge in novice learners
so subsequent instructor-led sessions can focus on deeper, more complex concepts.
Determining how best do we design and assess pre-class exercises requires a detailed
examination of learning and retention in an applied educational context. Here we
used electroencephalography (EEG) as a quantitative dependent variable to track
learning and examine the efficacy of JiTT activities to teach anatomy. Specifically,
we examined changes in the amplitude of the N250 and reward positivity event-
related brain potential (ERP) components alongside behavioral performance as novice
students participated in a series of computerized reinforcement-based learning modules
to teach neuroanatomical structures. We found that as students learned to identify
anatomical structures, the amplitude of the N250 increased and reward positivity
amplitude decreased in response to positive feedback. Both on a retention and transfer
exercise when learners successfully remembered and translated their knowledge to
novel images, the amplitude of the reward positivity remained decreased compared
to early learning. Our findings suggest ERPs can be used as a tool to track learning,
retention, and transfer of knowledge and that employing the reinforcement learning
paradigm is an effective educational approach for developing anatomical expertise.

Keywords: electroencephalography (EEG), event-related potential (ERP), neuroeducation, reinforcement learning,
reward positivity, N250, anatomy education

INTRODUCTION

In anatomy education, instructors utilize reinforcement learning principles informally in
lecture and lab settings to build foundational knowledge. Reinforcement learning is an adaptive
modification of behavior where information gathered from a learner’s previous experience, in
this case, instructor feedback, is used tomodify subsequent choices tomaximize future performance
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(Sutton and Barto, 1998). This time-consuming process
dominates limited student-instructor interactions since anatomy
curricula requires extensive terminology to identify and describe
anatomical structures. More appropriately, interactions should
pursue understanding of function, inter-relation, and clinical
implications of anatomy. However, acquiring foundational
knowledge is a key hurdle to overcome to participate in deeper
learning experiences (Pandey and Zimitat, 2007).

Just-in-Time Teaching (JiTT) methods incorporate
independent pre-class exercises (typically online) to establish
foundational knowledge followed by instructor-led teaching that
leverages this foundation to focus on more complex concepts
(Marrs and Novak, 2004). JiTT methodology, specifically
pre-class exercises, should focus on incorporation and retention
of knowledge into long-term memory (Custers, 2010; Mayer,
2010). The practical gap in anatomy education is how best do
we design and assess pre-class exercises to foster learning and
retention?

Our research operationalizes use of reinforcement learning
within the context of pre-class exercises to build foundational
anatomic knowledge. While using behavioral methods alone
provides a basic understanding of learning processes (Anderson
et al., 2016), directly measuring learning using neuroimaging can
provide insight at a more detailed level (Ansari et al., 2012). JiTT
pre-class modules offer a unique applied educational setting to
explore measurement of neural correlates of learning.

Studies using event-related potential (ERP)methodology have
quantified neurological changes in reinforcement-based learning
paradigms. For example, ERP component amplitudes changed as
participants learned to perform a feedback dependent perceptual
categorization task (Krigolson et al., 2009). Supporting this,
the N250—an ERP component associated with visual object
recognition increases in amplitude during acquisition of visual
perceptual expertise (Scott et al., 2006, 2008; Tanaka et al., 2006).
During reinforcement learning tasks, the brain predicts reward
values associated with each potential choice action. Through a
feedback dependent trial and error process, the predicted value
of an action comes to approximate the true value of the action,
thus a learner’s chance of successfully choosing the appropriate
actions increases (Sutton and Barto, 1998). The reward positivity
is an ERP component associated with evaluation of performance
feedback (Holroyd et al., 2008; Krigolson et al., 2009; Proudfit,
2014). As a subject gains perceptual expertise (marked by an
increase in N250 amplitude) their ability to internally evaluate
their responses increases and reliance on external feedback
decreases (marked by a decrease in reward positivity amplitude)
(Krigolson et al., 2009). Further, it was found that reward
positivity amplitude scaled like a prediction error–suggesting
reward positivity amplitude changes are linked to differences
between expected and actual rewards; as a subject learns, there
will be a diminished amplitude in response to the positive
feedback (Krigolson et al., 2014). In controlled settings (of
N250 and reward positivity), examination of retention has been
limited to a scale of hours to several days (Scott et al., 2008; Arbel
et al., 2013). Designing studies that permit examination of neural
signals during initial learning, retention and transfer exercises is
essential to determining whether neural correlates can be used

as a tool to track learning and memory in applied educational
settings.

The objective of this study was to examine amplitude changes
of the reward positivity and N250 as quantitative dependent
variables to evaluate reinforcement-based JiTT pre-class
exercises. We predicted that as participants learned to identify
and localize neuroanatomical structures: (a) N250 amplitude
would increase and remain elevated during retention and
transfer exercises; (b) reward positivity amplitude would
decrease as ability to internally evaluate the correctness of
responses enhances; (c) changes in reward positivity would be
greatest in the first learning exercise when information is novel
as opposed to retention exercises; and (d) diminished reward
positivity amplitude will be maintained as participants translate
knowledge to a new context.

MATERIALS AND METHODS

Participants
Twenty-three participants (11 females, 12 males; mean
age = 20.74 years (SD = 2.30)) were recruited from anatomy
classes at the University of Calgary, Calgary, AB, Canada.
The experiment was run in two similar cohorts of students in
anatomy courses (academic programs included Bachelor of
Health Sciences and Biomedical Engineering). Participation
was voluntary and written informed consent was obtained in
accordance with the Declaration of Helsinki. Participants had
minimal neuroanatomical knowledge related to cranial nerve
identification, as this was not part of curriculum taught thus
far in the anatomy classes. Prior to the experimental task, this
was confirmed using an identification test on information to
be learned in the task (no participant performance exceeded
75% accuracy, thus no exclusions were made). All participants
had normal, or corrected-to-normal vision, and no known
neurological impairments. This study was approved by the
Conjoint Health Research Ethics Board at the University of
Calgary (Ethics ID: REB14-088).

Experimental Design
Participation in this experiment involved completion of a
multi-session learning module to teach human cranial nerve
anatomy. The overall module consisted of two computer-
based sessions that bounded an in-class workshop lecture
followed by a laboratory session (see Figure 1 for an outline
of the sequence of learning events). Electroencephalography
(EEG) data was acquired during computer-based modules
as participants completed reinforcement-based learning tasks
(outlined below) meant to teach identification and localization
of the cranial nerves. Participants were administered an
identification test prior to and following this task to assess
knowledge. The in-class workshop consisted of a small group
activity where students were assigned sets of cranial nerve
lesion cases, where they had to identify the nerve involved
and surrounding considerations associated with the particular
injury. This was followed by a whole group presentation and
discussion of the cases. In the laboratory session participants

Frontiers in Human Neuroscience | www.frontiersin.org 2 February 2018 | Volume 12 | Article 38

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Anderson et al. Neuroeducational Approach for Anatomy Education

FIGURE 1 | Sequence of learning events.

examined cadaveric brains and skulls to review information and
gain appreciation for the close spatial relationships of anatomical
structures. Finally, a long-term retention test was administered
to the first cohort (n = 11) of students at approximately 20 weeks
following the learning exercises.

Reinforcement-Based Learning Module
During the computer-based learning module, participants were
seated comfortably in front of a 17′′ ASUS laptop computer
and provided a standard USB gamepad to respond. Questions
were presented during the task on the computer screen using
a customized MATLAB (Release 2015a, MathWorks, Natick,
MA, USA) script in conjunction with Psychophysics Toolbox
extensions (Brainard, 1997; Pelli, 1997). Framework for this
experimental task was adapted from Krigolson et al. (2009), and
a detailed description of this task was previously described in
Anderson et al. (2016).

Across a series of trials (questions), participants were trained
to identify and localize 12 cranial nerves through a trial and
error shaping process based on positive and negative feedback
provided. For each cranial nerve three incorrect labels were
purposefully selected from the other 11 possible nerves such that
all 12 nerve labels were equally used and served as proximal
distractors for the correct label. On each question the correct
label was shown 50% of the time while one of the three incorrect
labels was shown the other 50% of the time. A trial consisted of
the following components: a fixation cross (500 ms); an image
of a brain with an arrow indicating a cranial nerve (1500 ms);
a label for the cranial nerve (50% chance of being correct), and
a response by participants indicating ‘‘correct’’ or ‘‘incorrect’’
using the gamepad (maximum time allowed 2000 ms). Accuracy
feedback was then provided to the participant in the form of an
‘‘×’’ for incorrect trials or ‘‘X’’ for correct trials. Based on this
feedback participants were expected to attempt to modify future
responses. Trials (approximately 5 s) were grouped into blocks
of 24 trials (approximately 2 min), participants were provided
a rest period following each block, and could advance to the
next block when ready. We collected accuracy and response time
information for each trial to construct learning curves. On trials
where participants were too slow to respond to questions (0.72%
of total trials), we assumed that the participant would have
been incorrect, and the maximum time allowed for a response
(2000 ms) was used as a response time for analysis purposes.

The first computer-based session employed a diagrammatic
representation of the brain (image modified from Thieme

FIGURE 2 | Example of photo brain image (from the University of Calgary
Anatomical Specimens Collection).

Teaching Assistant, Baker et al., 2015) and the task consisted of
12 blocks (288 total trials). The second session began with the
diagrammatic representation for five blocks, then switched to an
image of a real brain (from the University of Calgary Anatomical
Specimens Collection) for the remaining eight blocks (312 total
trials). See Figure 2 for an example of the real brain image used.
Each of the computer-based learning tasks were completed over
approximately 30 min.

Electroencephalographic Data Acquisition
and Analysis
We recorded EEG data during the computer-based learning
modules from 16 electrode locations (FP1, FP2, AFz, FC5, FC6,
FCz, C3, C4, TP9, P3, Pz, P4, TP10, POz, O1, O2, plus ground
and reference) with an actiCAP Xpress acquisition system
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arranged in a standard 10–20 layout (Brain Products, GmbH,
Munich, Germany) and Brain Vision Recorder Software (Version
1.20, Brain Products, GMbH, Munich, Germany). Electrode
impedances were kept below 20 kΩ. EEG data was sampled
at a rate of 500 Hz and amplified (V-Amp, Brain Products,
GmbH, Munich, Germany: 0–500 Hz bandwidth, 24-bit A/D
conversion).

We conducted offline EEG data analysis using Brain
Vision Analyzer 2 software (Version 2.1, Brain Products,
GmbH, Munich, Germany). EEG analysis steps were
performed as follows (for more details, see http://www.
neuroeconlab.com/data-analysis.html). First, any overly noisy
electrodes were removed. Second, data were down-sampled to
a rate of 250 Hz to make the file sizes smaller for enhanced
computer analysis processing speed. Third, the data were
re-referenced from a common reference to linked TP9 and
TP10 electrodes. Next, the data were filtered using a phase
shift-free Butterworth filter with a 0.1–30 Hz passband and a
60 Hz notch filter.

Next, epochs for each ERP component of interest were
created. For the N250, the event of interest was the appearance
of the brain image in early trials (first 48 trials) vs. late trials (last
48 trials). For reward positivity, events were linked to feedback
onset and split by valence (correct or incorrect responses) as well
as early correct (first 50 correct feedback trials) vs. late correct
trials (last 50 correct feedback trials).

Data was segmented into 3000 ms units surrounding the
event of interest (1000 ms before and 2000 ms after) in order
to performed independent component analysis to correct for
ocular artifacts. Data was then re-segmented into 800 ms epochs
surrounding events (200 ms before and 600 ms after) and
baseline corrected using the mean voltage calculated from the
200ms preceding the event.We removed artifacts from the data if
voltage on any channel exceeded 10 µV/ms gradient and 150 µV
absolute difference criteria.

ERP waveforms were created by averaging EEG epochs
across all participants for each experimental condition outlined
above. We defined the N250 ERP component as the mean
voltage from 230 ms to 330 ms following presentation of the
stimulus at electrode site O1. As in previous research, the latency
window was selected based on visual inspection of the grand
average waveform and electrode site was reported for where the
N250 amplitude was maximal (Scott et al., 2006, 2008; Tanaka
et al., 2006; Krigolson et al., 2009). Difference waveforms were
constructed by subtracting ERPs on early trials from late trials to
examine development of perceptual expertise during the learning
modules.

We measured reward positivity as voltage potential changes
measured maximally at the FCz electrode site (overlying the
medial frontal cortex) in line with previous research (Holroyd
and Coles, 2002; Holroyd and Krigolson, 2007; Krigolson et al.,
2009). Reward positivity was defined as the mean voltage of
averaged waveforms from 264 ms to 304 ms post feedback at
electrode site FCz. To compare response to positive vs. negative
feedback, we constructed a difference waveform by subtracting
the ERP on incorrect trials from the ERP on correct trials for
each participant (Proudfit, 2014). Previous research suggests

that reward positivity is reduced with learning (Krigolson et al.,
2009, 2014), thus we also examined changes in reward positivity
in response to positive feedback across the entire experiment.
We generated six grand averaged ERP waveforms (module one
(diagram-based learning) early and late; module two (diagram-
based learning) early and late; and module two (real image-based
learning) early and late).

Statistical Analysis
Statistical analysis was performed using SPSS Statistics (Version
24). Statistical comparisons were made using paired sample
t-tests to examine behavioral (pre and post knowledge test) and
ERP component changes (N250 and reward positivity (correct vs.
incorrect feedback) under each condition assuming an alpha level
of 0.05 for statistical significance. Repeated measures analysis
of variance (RM-ANOVA) was used to compare behavioral
changes (accuracy across blocks) and reward positivity changes
across the entire experiment. Bonferonni post hoc analysis
was completed to identify specific differences. An additional
Greenhouse-Geisser correction was applied to adjust the degrees
of freedom as the assumption of sphericity was violated in the
behavioral accuracy analysis. Equal variance across the blocks
in accuracy performance did not occur due to the ceiling
effects innate to learning data. Effect sizes were determined by
calculating Cohen’s (1988); d (t-tests) and partial eta squared
(RM-ANOVA) to demonstrate magnitude of effect.

RESULTS

Behavioral Analysis
Computer-Based Learning Module 1
Prior to participating in any learning activities, participants
completed a test, employing a diagrammatic brain
representation, to assess prior knowledge of location and
identification of cranial nerves. Module 1 Pre-test score was
4.17%, 95% CI [−0.66, 9.00]. Following completion of the
session, there was a significant increase in performance on the
Module 1 Post-test score, t(22) = 14.14, p < 0.001, d = 3.86,
paired t-test, mean accuracy of 84.78%, 95% CI [72.95, 96.62].
Knowledge test performance across the experiment is shown in
Figure 3.

FIGURE 3 | Performance on knowledge test across learning events (±SD).
Note: all participants achieved 100% in the Module 2 Post-test.
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FIGURE 4 | Graphs showing changes in mean accuracy performance for each block of the reinforcement based learning computer modules for all participants
(±SD). (A) Module 1—diagrammatic brain image used for 12 blocks showing novice learning. (B) Module 2 Part 1—diagrammatic brain image used for five blocks
showing knowledge retention. (C) Module 2 Part 2—photo image of brain used for eight blocks showing transfer of knowledge.

We observed that participant learning curves indicate the
proportion of correct responses increases over 12 blocks
using the diagram image. The averaged learning curve for all
participants is shown in Figure 4A. There was a significant effect
of block number on cranial nerve identification performance,
F(4.94,108.71) = 45.93, p < 0.001, RM-ANOVA, partial eta
squared = 0.68. Mean accuracy in the first block was
55.98%, 95% CI [48.90, 63.06]. Mean accuracy consistently
improves across each block to 94.20%, 95% CI [89.54,
98.87] in the final block, and from block 6 (144 trials)
onward, no significant changes in performance were observed
(p’s > 0.05).

Computer-Based Learning Module 2
Following the in-class workshop, participants returned to
complete the second computer-based learning module.
Participation in the second module was 6.87 days (SD = 3.38)
following the first module. The second session began with a
repetition of the identification test, using a diagrammatic brain
representation to assess retention of prior information. Mean
score on this test was 89.67%, 95% CI [84.33, 95.02]. Following
the session, a new identification test was administered, using
an image of a real brain; here all students achieved a score of
100.00% (Figure 3).

Part one of the second learning module consisted of five
blocks of trials using the diagrammatic brain representation
(Figure 4B). Here, block number had no significant effect on
cranial nerve identification performance, F(3.07,67.61) = 2.58,
p = 0.06, RM-ANOVA, partial eta squared = 0.11. Performance
remained consistently high ranging from 94.38%, 95% CI
[92.38, 96.39], on the first block to 97.46%, 95% CI [95.86,

99.07] on the last block. The second part of the module
consisted of eight blocks of trials using an image of a
real brain (Figure 4C). Block number had a significant
effect on performance, F(3.86,84.89) = 18.62, p < 0.001,
RM-ANOVA, partial eta squared = 0.46. Specifically,
performance was significantly lower on the first block
(mean accuracy 83.70%; 95% CI [79.67, 87.72], p’s < 0.001).
However performance on the second and remaining blocks
did not differ significantly (p’s > 0.05), and the mean
accuracy in the final block was 96.56%, 95% CI [95.16,
97.96].

Comparison of Performance Across Experiment
From the post-test of the first module to the retention test
in the second module, mean performance improved by 4.89%;
however this increase was not statistically significant, t(22) = 1.05,
p = 0.31, d = 0.23, paired t-test. When a second retention test
was administered to the first cohort (n = 11) at approximately
20 weeks following the learning module, some knowledge was
retained. Here, on a free recall identification and localization test
participants achieved a mean score of 64.39%, 95% CI [50.49,
78.30], while on a cued recall test (where a list of potential
cranial nerves was provided) mean scores significantly improved
to 92.42%, 95%CI [84.43, 100.42]; t(10) = 6.60, p< 0.001, d = 1.66,
paired t-test (Figure 3).

There is no significant lapse in accuracy performance from
the end of the first to the second learning sessions (p = 1.00).
Interestingly, in part two of the second session when the
representation employed transitioned to a real image of a brain,
a drop in performance was only observed in the first block
(p < 0.001), however performance in subsequent blocks of part
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FIGURE 5 | (A) Grand averaged N250 event-related brain potential (ERP) waveforms at O1 and scalp distribution (between 230 ms and 330 ms) for early (dark) and
late (light) trials during Module 1. ERP difference waveform (red) shows late minus early trials. Negative is plotted up. (B) Mean N250 amplitude (between 230 ms and
330 ms) at O1 across all learning events (±95% CI). ∗N250 amplitude significantly decreases during Module 1.

FIGURE 6 | Grand averaged reward positivity ERP waveforms at FCz and scalp distribution for accuracy feedback in Module 1. Reward positivity is maximal
between 264 ms and 304 ms following feedback presentation. Negative is plotted up. (A) ERP waveform at FCz in response to correct (dark) and incorrect (light)
feedback. (B) ERP difference waveform and peak scalp distribution for correct minus incorrect accuracy feedback.

two did not differ significantly from the earlier five blocks of
the session that used the diagrammatic brain representation
(p’s > 0.05).

Response Time
Block number had a significant effect on response time in all
modules (Module 1: F(11,6061) = 157.83, Module 2 (Part 1):
F(7,3857) = 74.08; Module 2 (Part 2): F(4,2204) = 15.84; all
p’s < 0.001, RM-ANOVA, partial eta squared = 0.03–0.22).
Generally response time significantly decreased following the
first block of each module (Module 1, Module 2 Part 1 and

Module 2 Part 2) and response times followed a decreasing trend
across each module.

Electroencephalographic Data
The N250 and reward positivity ERP components were
independently analyzed for each of the experimental conditions
during the computer-based learning sessions. Due to either
excessively noisy electrodes of interest and/or the excessive
presence of artifacts 4 of the 23 participants were removed (>79%
of trials discarded). The remaining data (19 participants) were
retained for subsequent analysis (<12% artifacts).
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FIGURE 7 | (A) Grand averaged reward positivity ERP waveforms at FCz in response to correct accuracy feedback across all learning events. Negative is plotted up.
(B) Mean reward positivity amplitudes (between 264 ms and 304 ms) at FCz (±95% CI). Reward positivity amplitude is significantly greater than all other time points
in early learning of Module 1.

TABLE 1 | Reward positivity across learning modules in response to correct feedback (µV).

Module time point Mean Standard deviation 95% Confidence interval

Lower bound Upper bound

Module 1 (Diagram) Early 7.91 4.53 5.73 10.09
Late 2.41 4.53 0.23 4.60

Module 2 Part 1 (Diagram) Early 2.27 3.61 0.53 4.01
Late 1.74 3.17 0.21 3.27

Module 2 Part 2 (Photo) Early 1.34 3.35 −0.27 2.96
Late 0.23 3.20 −1.31 1.78

Object Recognition: The N250
Examination of the ERPs averaged to the onset of presentation
of the brain images revealed a left unilateral posterior N250
(maximal at channel O1). The N250 at O1 significantly increased
in amplitude from the start to the finish of the first learning
module, t(18) = 2.45, p = 0.03, d = 0.32, paired t-test (Figure 5).
In the second learning module there was no significant change
in N250 amplitude from early to late trials in either the diagram-
based learning (t(18) = 1.25, p = 0.23, d = 0.18, paired t-test) or
real image-based learning (t(17) = 1.59, p = 0.13, d = 0.24, paired
t-test) portions of the module.

Feedback Processing: The Reward Positivity
Difference wave analysis on responses to correct vs. incorrect
feedback was only possible for the first learning session, since
beyond this session participant performance was too high
to have enough error trials to generate ERP waveforms for
response to receiving incorrect feedback. Analysis revealed an
ERP component consistent with previously measured reward
positivity, and was maximal at the FCz channel with a peak
latency of 284 ms (Figure 6), t(17) = 4.50, p < 0.001, d = 1.05,
paired t-test.

We also examined changes in amplitude of reward positivity
in response to positive feedback across the experiment. To

generate these ERP waveforms, trials where participants received
feedback indicating they were correct were extracted from
the first and last 50 trials of each experimental condition.
The following ERP waveforms were generated: module one
(diagram-based learning) early and late; module two (diagram-
based learning) early and late; and module two (real image-
based learning) early and late (Figure 7A). Amplitudes of each
waveform were compared from 264 ms to 304 ms at FCz.
Experimental condition had a significant effect on amplitude
of response to positive feedback, F(5,90) = 10.99, p < 0.001,
RM-ANOVA, partial eta squared = 0.38. Specifically, the
amplitude was significantly greater for the early set of trials for
the first module (p’s between <0.001 and 0.006), but all other
trial sets did not significantly differ from each other (p’s > 0.05;
Table 1, Figure 7B).

DISCUSSION

Successful learning is, in essence, the result of changes in
brain activity related to the proper storage and retrieval of
information. The objective of this study was to measure
these neural changes and use them as a new quantitative
dependent variable from which to examine learning in an
applied educational setting. Our results demonstrate that as
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novice participants learn to identify anatomical structures:
(a) N250 amplitude (a marker of perceptual expertise) is
enhanced; (b) reward positivity amplitude (a signal associated
with reinforcement learning systems in response to positive
feedback) decreases; (c) the diminished reward positivity
amplitude to positive feedback is maintained on a knowledge
retention exercise; and (d) reward positivity amplitude remains
diminished as learners successfully transfer their learning to
a new context. Together the behavioral and neural correlate
evidence indicate that JiTT activities employing a reinforcement
learning paradigm are an effective method to build retainable
knowledge.

Our results show a significant elevation in N250 amplitude
as participants successfully learn to identify neuroanatomical
structures. The N250 component was lateralized to the left
occipital region, which was also reported by Pierce et al.
(2011) who suggested that activation in this region was
related to accessing stored representations in visual memory
structures. Interestingly, we did not detect a significant change in
N170 amplitude (an ERP component associated with recognition
at a basic level) over this same period. The simplest explanation
for this is that while participants learned our task they were not
yet experts due to an insufficient amount of practice (Ericsson,
2009).

In accordance with the behavioral data indicating a high
level of knowledge retention and transfer during the second
learning module, N250 did not differ from the end of the
first module to the beginning of the second module or within
each of the early to late trials of the retention and transfer
exercises. In a task where participants learned to categorize
cars, Scott et al. (2008) noted a similar persistence of the
N250 1 week following training. The authors suggested that
the persistence of the N250 signal is related to acquisition of
long-term perceptual expertise. In our tasks, stimuli consisted
of the same image with an arrow indicating 12 different
regions, such that participants experience a large amount of
repetition; this is also the case in the Scott et al. (2008)
study where 60 car stimuli were used as part of eight training
sessions prior to the retention task. In an earlier study,
Scott et al. (2006) note that the second presentation of the
identical stimuli results in a smaller N250 compared to the first
presentation of the stimuli during subordinate level perceptual
training.

We observed a significant decrease in reward positivity
amplitude over the course of the first module where participants
successfully learn to identify neuroanatomical structures based
on feedback. Our finding is consistent with the previously
described reward positivity ERP component where the ERP
component is focussed over the medial frontal cortex (Krigolson
et al., 2009, 2014; Proudfit, 2014). Evidence provided by
Krigolson et al. (2014) suggests that changes in reward
positivity measured at the scalp level reflect changes in a
reinforcement learning prediction error (the difference between
actual vs. expected values of a reward). This work provides
further evidence that, as a subject learns, their ability to
internally evaluate their own responses is enhanced, and
thus their reliance upon, and neural response to, externally

provided feedback will decrease (Krigolson et al., 2009,
2014).

Our results further support the use of a reinforcement
learning paradigm as a robust method for developing retainable
expertise and that reward positivity can be used as a tool to track
change and retention in learning. Specifically here we extend
the measurement of retention to approximately 1 week, and
report both continued maintenance of reward positivity signal
trends and supporting behavioral data indicating retention of
knowledge.

When participants were shown a new stimulus in the second
module (a photo of a real brain) and asked to identify structures,
behavioral performance significantly dropped in the first block
(mean accuracy 83.70%; SD = 9.31) however reward positivity
signal was maintained. This indicates that despite a drop in
behavioral performance, neural data indicates participants are
still able to self evaluate responses prior to external feedback.
Further support for this theory is that behavioral performance
rebounded to previous accuracy levels by the second block
(from late trials of diagram based learning in Module 2 Part 1)
and reward positivity signals continue to trend downwards by
completion of the module. This suggests that learning in the new
context built upon knowledge from the prior context (related
to the diagram) rather than beginning from a novice level.
This is an important finding since it is a clear example of the
potential value of neuroeducational approaches in empirically
accessing learning processes that behavioral data alone cannot
reveal. Measuring neural changes related to learning offers the
opportunity to define neural correlates as markers linking a
learner’s behavioral performance to changes in neural signals
and thus the capacity to directly explore a learner’s cognitive
processing without interfering with the actual processing itself
(Dalgarno et al., 2010). Furthermore, changes in neural correlates
can be observed before the differences in behavioral outcomes
are apparent. This offers access to earlier stages of learning
and provides an alternative measure for testing the efficacy
of different teaching methods in a quantitative manner to
inform advancements in instructional design (Dalgarno et al.,
2010; Friedlander et al., 2011; Della Sala and Anderson,
2012).

Reinforcement-based approaches to studying have been
shown to enhance recall of information over time compared
to studying alone in recognition-based information learning
tasks (Schmidt and Bjork, 1992; Roediger and Butler, 2011).
Here we have formalized reinforcement-based learning as
a strategy to impart and promote retention of anatomic
knowledge in novice learners. By collecting neural data in
addition to behavioral data we are better able to capture
the nuances in learning and provide empirical evidence for
success of this strategy. Leveraging reinforcement learning
as an explicit JiTT activity to teach foundational knowledge
in anatomy education then allows for student-instructor
interactions to advance to clarification and elaboration of
knowledge.

This work serves as a starting point to study the applied
use of EEG as a tool to track learning in an applied context.
Given the exploratory nature of this work, further investigations
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are required into the following areas. First, the period between
the first and second module we utilized was 6.87 days (due
to academic course constraints). The ‘‘retention interval’’,
though greater than reward positivity studies and in line
with perceptual expertise studies (Scott et al., 2008), is not
very long on the spectrum of what is considered successful
retention in an educational setting. Typical retention intervals
in educational research are 3–4 weeks. We were able to
administer a behavioral identification test at 20 weeks in a
sub-cohort of our participants to explore long-term retention
and this did show promising behavioral results (particularly
for a cued response). Future studies will include examination
of neural signals at intervals more in line with educational
research on retention. Second, a workshop between the two
computer based modules may have affected learning and
memory processes. Despite the emphasis in the workshop
on clinical relevance of lesions to the cranial nerves (rather
than localizing the nerves on specimens), this discussion
likely promoted rehearsal of the names of the nerves and
contributed to consolidation of knowledge. Third, in the first
module two participants did not achieve the same accuracy
levels as the rest of the group and could be considered low
learners. We did not split the analysis of the two low learners
from the first module out from the group performance to
examine ERPs, since performance of these two learners did
not differentiate from the group in the second module. To
more closely examine factors contributing to the low learner
status, we would need to gather enough participants to stratify
learners to two groups. Finally, as with any educational
intervention these findings may be context specific. Further
work to explore different anatomical regions and image fidelity
in other modules would add to the generalizability of these
findings.

While this work is meant to be foundational in nature by
exploring the feasibility of measuring neural correlates in an
educational setting, it opens potential avenues of application in
teaching practice. Because neural data allows earlier access to
learning processes compared to behavioral data, measurement of
neural correlates could be used to compare teaching methods or
types of anatomical representations to best promote efficiency
in learning. On an individual level, there is potential to
identify learners at risk using neural data. If a learner is not
demonstrating the expected changes in neural signals associated
with successful learning this could indicate challenges with
initial learning and be predictive of future problems with

retention. Specifically, the neural information could be used to
differentiate between deficiencies in visual recognition—if there
is an absence of N250 amplitude changes, or challenges related
to internalizing and applying feedback—if RewP amplitude
remains elevated; this would allow for targeted intervention by
an instructor.

In conclusion, engaging in higher-level discussion in the
classroom often requires that students possess foundational
knowledge from which to explore. Given the time-limited
classroom environment, seeking methods to impart this
knowledge to students in an efficient manner is essential
to permit subsequent interactive exploration of content. This
study describes an evidence-based approach to successfully
instil foundational knowledge combined with a neuroscientific
approach to measure and quantify results. These findings give
insight into the biology of learning in an applied setting and
demonstrate the utility of measuring neural correlates event
related potentials (N250 and reward positivity) to reveal learning
processes underlying behavioral performance.
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