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Abstract

Background: As we learn a new nonnative language (L2), we begin to build a newmap

of concepts onto orthographic representations. Eventually, L2 can conjure as rich a

semantic representation as our native language (L1).However, theneural processes for

mapping a new orthographic representation to a familiar meaning are not well under-

stood or characterized.

Methods:Using electroencephalography and an artificial language that maps symbols

to English words, we show that it is possible to use machine learning models to detect

a newly formed semantic mapping as it is acquired.

Results: Through a trial-by-trial analysis, we show that we can detect when a new

semanticmapping is formed.Our results show that, likewordmeaning representations

evoked by a L1, the localization of the newly formed neural representations is highly

distributed, but the representationmayemergemore slowly after theonset of the sym-

bol. Furthermore, our mapping of wordmeanings to symbols removes the confound of

the semantics to the visual characteristics of the stimulus, a confound that has been

difficult to disentangle previously.

Conclusion:We have shown that the L1 semantic representation conjured by a newly

acquired L2 word can be detected using decoding techniques, and we give the first

characterization of the emergence of that mapping. Our work opens up new possibili-

ties for the study of semantic representations during L2 learning.
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1 INTRODUCTION

Learning a new nonnative language (L2) is difficult and requires dedi-

cation and practice. Some of the first lessons when learning an L2 aim

to teach a small basic vocabulary so that subsequent lessons can use

that vocabulary.Whathappens in thebrainduring these first lessons, as

we learn to map a familiar concept to a foreign word-form? The neural

representations evoked by aword-form from a participant’s native lan-
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guage (L1) have been studied extensively (Mitchell et al., 2008; Sudre

et al., 2012; Wehbe et al., 2014; Huth et al., 2016), but little attention

has been paid to the evoked semantic representations during the pro-

cess of learning a new language.

Here we ask: can methodologies effective for detecting lexical

semantics in an adult’s L1 be used to detect newly mapped seman-

tic meanings evoked by the L2? If so, what are the neural signatures

of the newly mapped representation (e.g., timing of onset, salience,

Brain Behav. 2021;11:e2234. wileyonlinelibrary.com/journal/brb3 1 of 11

https://doi.org/10.1002/brb3.2234

mailto:alona@ualberta.ca
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/brb3
https://doi.org/10.1002/brb3.2234


2 of 11 FOSTER ET AL.

F IGURE 1 An overview of the experimental paradigm. Participants were required to learn amapping of symbols to English words through trial
and error to simulate vocabulary learning. Participants were shown a symbol, and then presented with four word-forms fromwhich to choose
(heremap, shoe, we, swim). Based on their response (herewe), they receive positive or negative feedback about their selection. More details appear
in Section 2.1

distribution over the scalp), and how might they differ from results

for L1?

To answer these questions, we used a machine learning methodol-

ogy developed to detect semantic representations in L1 (Sudre et al.,

2012). Unlike ERP (event-related potential) analyses, which compare

the magnitude of electroencephalography (EEG) signals across condi-

tions (e.g., N400, P600), ourmachine learningmodels allowus to detect

multivariate patterns indicative of word meaning across multiple EEG

sensors at multiple time points. This process of recovering aspects of

the stimuli from brain images is called decoding. We trained and tested

our machine learning models on signals collected via EEG during a lan-

guage learning paradigm (see Figure 1). During the EEG experiment,

participants learned a mapping of symbols to meanings through trial

and error. Our results showed that

1. the acquisition of a new semantic mapping can be detected

with EEG;

2. In order to obtain a reliable signature of semantic mapping, partic-

ipants need to see the symbol several times, more than would be

predicted based on behavioral measurements;

3. like seen previously for L1 representations, the neural representa-

tion of a newly learned symbol is detectable in many of the EEG

sensors, but the representation may be shifted in time and less sus-

tained than previously reported in L1; and

4. the semantics of a word can be decoded evenwhen it is evoked by a

totally arbitrary symbol.

Together, our results describe the characteristics of newly learned

semantic mappings in the human brain and provide a paradigm and

analysis framework for studying semantic representations during lan-

guage learning.

1.1 Reading in a native language (L1)

During L1 reading, semantic incongruities in sentences (e.g., He

spread the warm bread with socks.) can be detected based on ERP

responses in EEG (Kutas & Hillyard, 1980; Kuperberg, 2007). Machine

learning methods can decode word meaning from brain images using

multivariate patterns, even when there is not a clearly visible sepa-

ration in the univariate response (e.g., ERPs, activation of individual

voxels). For example, machine learning can be used with functional

magnetic resonance imaging (fMRI) data to differentiate between

trials where participants view pictures or read sentences (Mitchell

et al., 2002). Complex neuronal activation features can also be

extracted using machine learning for tasks like detecting ambiguous

sentences, performing sentiment analysis, or determining the category

of an object (Mitchell et al., 2002; Shinkareva et al., 2008; Gu et al.,

2014).

Additionally, machine learning models allow us to more deeply

explore semantic processing and have allowed us to track the flow

of information in the human brain during reading via fMRI and

MEG (Mitchell et al., 2008; Sudre et al., 2012). Mitchell et al. showed

that machine learning could be used to detect which word-forms were

being read by a participant using fMRI. By training a model to accu-

rately predict the expected fMRI activity for a noun from the probabil-

ity of collocation with 25 verbs, Mitchell et al. showed that the seman-

tic features of a word (e.g., edibility, manipulability) are correlatedwith

fMRI data of a participant reading that word (Mitchell et al., 2008).

Specifically, a linear regressionmodelwas trained touse theprobability

of aword-formbeing collocatedwitheachof the25verbs topredict the

fMRI activity. This prediction was then used as part of the 2 vs. 2 test

(described in Section 2.3) to more robustly measure the efficacy of the

models. Although theirmodelwas trained using 60 concrete nouns, the

model was capable of generating predictions for thousands of words

for which it had never seen corresponding fMRI data. This work dif-

fered from previous work, which performed statistical comparisons of

brain activity across a small number of conditions (e.g., syntactically

sound vs. malformed sentences) (Kutas & Hillyard, 1980; Kuperberg,

2007) or was only being capable of recognizing classes of brain activity

that the model had encountered during training (Mitchell et al., 2002;

Mitchell et al., 2002; Shinkareva et al., 2008; Gu et al., 2014). Mitchell

et al. (2008) demonstrated a direct relationship between the statistics

of word-form co-occurrence and the neural activation associated with

eachword’s meaning.

Another key study in this area reproduced Mitchell et al. (2008)

using MEG (Sudre et al., 2012). However, rather than generating fea-

tures based on word-form colocation, the Sudre et al. features were
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based on human ratings [1–5] for a set of semantic properties (e.g., Is

it alive? Is it bigger than a golf ball?). Sudre et al. used a ridge regres-

sion model to predict the semantic property ratings from the MEG

data. MEG allowed Sudre et al. to more accurately identify when in

time the semantics of a word could be detected, and when the repre-

sentationwas the strongest. Subsequent work showed that, with some

fine tuning, word vectors derived from a text corpus could be as accu-

rate for predicting the word-form a person is reading as the behavioral

vectors used in Sudre et al. (Murphy et al., 2012). Word vectors are

lists of numbers which abstractly represent the semantic relationships

betweenwords through the similarity and spatial relationships ofword

vectors (Mikolov et al., 2013b). For example, the vector for “king”minus

the vector for “man” plus the vector for “woman” is similar to the vec-

tor for “queen” (Mikolov et al., 2013c). Such word vector models can

be generated in many ways, but often are the by-product of a model

trained to estimate the probability of colocatedwords in a corpus, as is

the case for Skip-Gram (Mikolov et al., 2013a) (the word vector model

used in this work).

Studying the brain’s representation of individualwordmeanings has

proceeded largely with MEG and fMRI; EEG has remained compara-

tively underutilized. This may be due to the challenges that come with

EEG data (e.g., lower spatial resolution, comparatively poor signal-to-

noise ratio). One of the first studies to successfully differentiate word

meanings using and EEG was performed by Murphy et al. (2009). In

addition, they were able to distinguish between two semantic classes

(landmammals or work tools) (Murphy et al., 2009, 2011). Themodel’s

accuracy was as high as 98% when averaged over multiple analyses,

providingevidence thatEEGcould givemore cost-effective exploration

of brain-based semantics inmore naturalistic environments. Our study

adds to the body of evidence that EEG can be used to detect semantic

representations with significant predictive accuracy.

One benefit that comes with MEG/EEG is better time resolution,

allowing for a pinpointing in time of the onset of a semantic represen-

tation. Using MEG, Sudre et al. (2012) determined the early onset of

decoding accuracy around 100 ms after the onset of the word-form.

Other studies corroborate this using combined EEG/MEG to showing

that models can differentiate between semantic categories as early as

150 ms into the trial (Moseley et al., 2013). In our experiment, partici-

pants are shown the L2 symbol, followed by a set of four English words

from which to choose the correct meaning. Thus, after the semantic

mapping has been formed, we would expect to see a signature of the

correct meaning after the onset of the symbol and possibly after the

onset of the English choices (if the correct answer dominates the neu-

ral signature).

All reading paradigms suffer from visual confounds that arise

because semantics and word-form have correlations. For example,

because some dimensions of a word vector model are correlated with

the frequency of the corresponding word-form (Hollis & Westbury,

2016), and shorter word-forms are, on average, more frequent than

longer ones (Piantadosi et al., 2011). Because longer word-forms will

also take up more space in the visual field and be made up of more

white pixels, it is possible that some part of the visual signal alone could

be used to predict the word vector without using semantic informa-

tion. However, our paradigm uses a randomly selected symbol to rep-

resent word meaning, and so we are able to disentangle some of the

visual effects present in typical word-reading paradigms. Ourword-to-

symbol mapping is totally arbitrary, our paradigm triggers the seman-

tics of the word without suffering from the typical visual confounds of

the written word-form.

1.2 L2 language learning

Our experimental design allows us to study participant learning in a

unique way by applying a machine learning model that leverages word

vector representations. However, learning more broadly has been tra-

ditionally studied in EEG using ERPs. One ERP of interest is known

as the reward positivity, which is characterized as a frontal-central

(peaks at FCz and Cz) deflection 260–360 ms following feedback

stimulus onset (Proudfit, 2015; Williams et al., 2021). The amplitude

of the reward positivity is associated with behavior-measured learn-

ing when presented in a reinforcement learning paradigm (Holroyd &

Coles, 2002; Williams et al., 2017) (described in greater detail in Sec-

tion 2.1). However, the exact nature of the reward positivity’s asso-

ciation with learning remains unclear. In some work, the reward pos-

itivity is found to have a progressively reduced amplitude as partici-

pants perform better on the task and in other work, this correlation

has not been consistently detected (Walsh & Anderson, 2012). Previ-

ous work exploring the same data analyzed here showed that neural

signatures were indicative of learning and that they were indicative of

behavioral measures of learning (Williams et al., 2020). Here we pro-

poseanalternativemethodology for studying learningusing adecoding

approach.

Of course, language learning is very complex and requiresmore than

vocabulary learning. Our study explores one of the first tasks in learn-

ing an L2, the acquisition of a basic meaning-to-word-form mapping. A

small learned vocabulary can then bootstrap incidental language learn-

ing, whichmay be amore effectivemode for language learning (Huckin

& Coady, 1999). Though gray matter and white matter changes have

beendocumentedovermanyweeksof language learning (Hosodaet al.,

2013), the neural representations during the early stages of vocabu-

lary learning have not been explored. It has been shown that EEG can

detect when a participant is reading an unknown word-form (Schnee-

gass et al., 2019), but it is unclear if the signals of learning might dwarf

those related to the semantic representation of a newly learned word.

We do know that, once a person acquires an L2, the neural representa-

tions evokedby their L1 andL2are very similar (Buchweitz et al., 2012).

This paper combines paradigms from the field of learning with

methodology from previous studies of the brain’s representation of

meaning. We apply existing semantic decoding methodology (Mitchell

et al., 2008; Sudre et al., 2012) to EEG data. We use a reinforcement

learning task to guide participants as they learn an artificial language.

To detect semantics, we trained a machine learning model to predict

word vectors (derived from an artificial neural network, which is a type

of machine learning model loosely inspired by biological neural net-

works) from raw EEG signal. This technique allows us to predict word
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meanings thatwere not included in our training set (as in Mitchell et al.,

2002).

2 MATERIALS AND METHODS

Our data were originally published by Williams et al. (2020). At this

time, this research data are not publicly shared. The dataset consisted

of EEG data from 25 undergraduate students (nine males) with an

average age of 20 years (standard deviation 1.9 years), whom were

recruited using an online sign-up system to receive credit in a psychol-

ogy course. Participants were not required to be native English speak-

ers, but were required to be fluent in English. As such, our sample had

an average self-reported English fluency of 9.7 out of 10. In addition,

the participants were unaware of the objectives of the current experi-

ment. The task used here and byWilliams et al. (2020) had participants

learn a novel language by associating symbols to English word mean-

ings. Williams et al. (2020) used this data to investigate trial-by-trial

neural changes as reflected by the reward positivity and contrasted

these trends to a reinforcement learning computationalmodel. In other

words, they investigated the neural underpinnings of learning curves.

Here, we rather investigated the development of semanticmaps across

learningby incorporating the full rangeofEEGdatawithin ridge regres-

sionmodels.

2.1 Paradigm

Participants viewed a series of symbols from the Tamil and Manipuri

alphabets, each assigned to a random English word and associated

meaning (consistent across all participants). Participants were pre-

sented with a symbol (considered the onset of a trial, 0 ms), and 500

ms later presented with four options from which to select the cor-

rect word-form via a button press. The participant then received visual

feedback about their response: (“✓” or “X”). The language learning here

is not meant to be representative of learning a complete language, but

is simply a proxy for early vocabulary learning.

Note that the stimuli used here were mapped to common English

words. Participantswere not learning newwords in this paradigm, they

were learning a mapping from unfamiliar symbols to familiar words

in English.

To facilitate learning, symbols were selected from a set that grew

as the experiment progressed. During the first block, participants

were presented with six symbols (representing three pronouns, three

verbs). In subsequent blocks, three new symbols (and thus three new

wordmeanings) were added. These three new symbols were randomly

paired with three previously seen symbols so that each block cycled

through six symbols, and the randomness avoided confounds across

participants. There were a total of 19 blocks, and 60 total symbols

learned (see the Appendix for a full list). We chose this composition

of word types because the original experiment also presented partic-

ipants with sentences (e.g., I went store). The current article concerns

the processing of words in general and thus all words were included in

analyses, but no sentences. Because of the random addition of words

throughout the experiment, each participant views each symbol for a

different number of trials (ranging from 0 to 20).

The stimuli were displayed on a gray background. Each trial begins

with a black fixation cross for 700–1000 ms, followed by a symbol

written in black, 4.5 cm2 in size. The symbol presented was randomly

selected from the list of six for the block. After 500 ms, four black

English words appeared simultaneously in the arrangement of a fix-

ation cross (top, bottom, right, left) below the symbol. One of the

choices was the correct answer, and three distractor words (incorrect

answers) were randomly chosen from the other fivewords in the block.

The assignment of words to the four locations was randomly deter-

mined. Participants were instructed to respond as accurately as pos-

sible by pressing one of the buttons on the RESPONSEPixx controller,

which also has response buttons arranged in a cross. Once a partici-

pant made a selection, the selected word turned white for 500 ms, the

screen changed to a fixation for 700–1000 ms, and a feedback stimu-

lus appeared for 1 s (“✓” or “X”). If a selection was not made within 2

s, an exclamation mark would appear to signify that they took too long

to respond. (See Figure 1 for an overview of the paradigm and timing.)

Within a block, participant accuracy was computed over a window of

10 symbols, and participants stayed on the current block until the par-

ticipant received 90% or higher accuracy over a window of 10.

To further facilitate, the transfer ofmeaning to symbols, participants

also viewed three-word sentences beginning with a pronoun (I, we,

you) followed by a verb, ending with either an adjective or noun (e.g.,

I go fishing). The sentence phases displayed three sentences before and

after each word-learning phase described above. In these phases, par-

ticipants saw one symbol at a time for 1 s each, separated by a fixation

cross for 700–1000 ms, which was followed by four English sentences

from which to select what the sentence had said. For the purposes of

our study, the sentence trials were discarded. The participants each

saw on average 667 (𝜎 = 79) symbol exposures, including sentences,

with breaks provided.

2.2 Data preprocessing

All EEGdatawereprocessedusingBrainVisionAnalyzer software (ver-

sion 2.1.1, Brain Products GmbH, Munich, Germany). Data from each

participant were manually reviewed to identify bad or flat channels

due to a poor connection or movement. The channels were marked

and removed from the dataset. The datawere then downsampled from

500 to 250 Hz, re-referenced to the average mastoid reference, and

put through a dual pass phase free Butterworth filter (pass band: 0.1–

30 Hz; notch filter: 60 Hz). Epochs were then extracted from the EEG

data −1000 to 2000 ms around the onset of the symbol. The large

time rangewas to facilitate the correction of eye blinks andmovements

artifacts via independent component analysis (ICA) provided by Brain

Vision Analyzer (Luck, 2014). A restricted fast ICA with classic PCA

(principal component analysis) sphering was used to identify compo-

nents. This process continued until either a convergence bound of 1.0

× 10−7 or 150 steps had been reached. Ocular artifacts were selected
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F IGURE 2 The data reshaping pipeline. Averaged trial data fromDselected can be directly passed to the data flattening process, or it can be
passed through a timewindow or electrode selection processes. These processes reduce either the number of time points (𝓁) or the number of
electrodes (ne) considered in downstream analysis. Though not pictured, we can also perform both time and electrode selections at the same time.
We reshape the resulting tensor, flattening across the electrode dimension, such that the final datamatrix has ns (number of symbols) rows and
≤ (ne ∗ l) columns

manually by inspection of the component head maps and related fac-

tor loading and corrected via ICA back transformation. Electrodes that

were initially removedwere interpolated via spherical splines.

Symbol trials were then resegmented and trimmed to a 1000-

ms window following stimulus onset. The data were also baseline

corrected using the 200-ms prior to stimulus onset. Lastly, artifact

rejection was applied. Any trial that contained an absolute difference

between the lowest and highest voltage in that trial of more than

100 𝜇V for any electrode was discarded. Every trial that contained any

periodwhere the increase or decrease on any electrodewasmore than

10 𝜇V/ms was discarded as well. In total, 23% of the trials were dis-

carded.

2.3 Methodology

Our methodology closely followed Sudre et al. (2012). We trained a

series of ridge regression models that use the EEG data to predict

the values for each dimension of the word vectors, a process often

referred to as decoding. Our word vectors came from the Skip-Gram

model described by Mikolov et al. (2013a). Hollis et al. (2017) showed

that Skip-Gram vectors could be used to predict human judgments for

semantic tasks (e.g., sentiment ratings), and Skip-Gram vectors have

been used to identify the semantics of many word types in fMRI , EEG,

and MEG , and shown to perform similarly to other word vector mod-

els (Xu et al., 2016). Though the model’s accuracy might change when

using different word vectors, in our experience the general patterns of

model accuracy (e.g., timing of peaks, spatial location) are less sensitive

to the choice of word vector model.

OurEEGdatahavehighdimension (manyEEGsensor/time features)

but comparatively few samples (words). In this scenario, regulariza-

tion can improve model performance on held out data by shrinking the

weights corresponding to irrelevant or less useful features, thereby

reducing the number of effective parameters in the model. For exam-

ple, in EEGdata, signals originating from areas of the brain not engaged

in the relevant language task are likely irrelevant. For this reason, we

use ridge regression (L2-regularized regression), which robustly han-

dles data of high dimension by encouraging near-sparsity (very small

learned weights for less useful features), and has a closed form solu-

tion (whereas L1 regularized regression does not). In addition, in cases

where features are noisy but correlated, L2 regularization outperforms

L1 (Ng, 2004).1

The EEG data for each symbol and each participant can be repre-

sented by a tensor2 D ∈ ℝ(r×ne×l), where r is the total number of times

a symbol was seen by a participant. Because of the randomness of the

paradigm, r ranges between 0 and nt , where nt is the maximum num-

ber of possible trials seen for a given symbol. We use ne to denote the

total number of electrodes, l for the number of time points, np for the

number of participants, and ns for the number of symbols. Depend-

ing on the type of analysis being performed, we selected some subset

of trials, electrodes, or time points from D. We then averaged across

all selected trials and participants to create a tensor of dimension

ns × ne × l, denoted as Dselected. Figure 2 gives an overview of the data

selection and reshaping process.Using only a subset of electrodes/time

points allows us to test for the presence of information at a particular

location/time.

To accommodate the training of regression models, Dselected was

reshaped to produce a matrix with dimensions X ∈ ℝns×(ne∗l). The Skip-

Gramword vectors of dimension v form amatrixY ∈ ℝns×v .We trained

v independent ridge regression models, such that each model predicts

each dimension of the Skip-Gram word vectors. We use a linear least

squares loss function and L2-norm regularization (ridge regression):

min
W:,i

||XW:,i − Y:,i||22 + 𝛼||W:,i||22, (1)

where regression model i is trained to predict the ith dimension of

the word vectors (column vector Y:,i) using weights W:,i. The symbol :

indexes every element in the dimension, indicating the selection of a
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F IGURE 3 A visual explanation of the 2 vs. 2 test. The axes
correspond to the first and second dimensions of the Skip-Gramword
vectors. The blue points (y1 and y2) correspond to the position of two
hypothetical word vectors in this two-dimensional space, the true
word vectors. The orange points(ŷ1 and ŷ2) represent the predictions
from our ridge regressionmodel for EEG collected while people
viewed the symbols mapped to the two hypothetical word vectors.
The 2 vs. 2 test measures the distance betweenmatched (purple
dotted line) versus mismatched (green dashed line) true-to-predicted
assignments and chooses the assignment that minimizes the sum of
the distances. Here, y1 would be assigned to ŷ1 and y2 would be
assigned to ŷ2 because the purple lines are shorter than the
green lines

whole row or column vector from a matrix. 𝛼 is a hyperparameter that

controls the level of regularization. Regularization helps to prevent

overfitting and therefore increase themodels’ robustness to noise.We

use a standard 𝛼 = 0.1, although we tested several values and found

the only minor variation in performance. Using our trained regression

model, we can predict a single element of a word vector for a given

inputXi,: via Ŷi,j = Xi,: ⋅W:,j. Given the set of v regressionmodels (param-

eterized byW), we can predict a full Skip-Gramvector and thus approx-

imate themeaning of the symbol from the EEG.

We evaluated the set of ridge regressionmodels in a “leave two out”

fashion using the 2 vs. 2 test. We held out pairs of symbols and trained

ridge regression models to predict the vectors of the associated words

using the EEG data from the remaining ns − 2 symbols. Themodel then

predicts word vectors using the held out EEG data. In the 2 vs. 2 test,

the trueword vectors (Yi,: ,Yj,:) are compared to thepredictedword vec-

tors (Ŷi,: , Ŷj,:) using cosine distance. The 2 vs. 2 test passes if the sum of

the distances between the correctly matched true and predicted word

vectors (d(Yi,:, Ŷi,:) + d(Yj,:, Ŷj,:)) is smaller than the distance of the mis-

matched vectors (d(Yi,:, Ŷj,:) + d(Yj,:, Ŷi,:)). We ran the 2 vs. 2 test for all

possible
(ns
2

)
pairs ofwords. If there is no relationship between the EEG

data and the word vectors, the 2 vs. 2 accuracy (the percentage of the(ns
2

)
2 vs. 2 tests correct) will be near chance (50%). For a visual depic-

tion of the 2 vs. 2 test, see Figure 3.

We tested statistical significance using permutation tests. For each

analysis, we reran the above pipeline, but randomly shuffled the order

of the word vectors so that the true word vectors no longer correctly

matched with the EEG data for each symbol. We corrected for multi-

ple hypothesis testing using the Benjamini–Hochberg–Yekutieli proce-

dure (Benjamini & Yekutieli, 2001) where applicable, using 𝛼 = 0.05.

3 EXPERIMENTS AND RESULTS

We devised four analyses to study the emergence of semantic repre-

sentations in the brain during the symbol learning paradigm.

3.1 Semantic representation analysis

When the participants initially viewed the symbol, they did not know

whichEnglishwordmeaning itmapped to. But, as they learned the sym-

bol mapping through trial and error, they developed a semantic under-

standing. First, we tested the simple (but previously untested) hypoth-

esis that EEG data collected while participants viewed a symbol can be

used to predict the word vector for the corresponding English word.

For each participant, we removed symbols that were presented less

than six times and removed the first two trials of each symbol (as sym-

bols were rarely learned before the third trial). We tested using data

from 0 to 500 ms after the onset of the symbol, which excludes the

appearance of word choices at 500 ms. We then averaged the remain-

ing trials over all participants for each symbol, which gave us a single

noise-reduced trial-average per symbol. With this data, our regression

models produced a 2 vs. 2 accuracy of 69.15%, which is statistically

above chance (p < .001) and shows that the semantic representation

for the L1word is available after viewing the L2 symbol.

3.2 Time windowing analysis

Wehave determined that the semantic representation of theword can

bedetectedusingEEGcollectedduring the time the symbol is visible on

the screen. We also wished to understand the time course of semantic

representation recall when evoked by a newly learned symbol. Here,

we took advantage of EEG’s high temporal resolution to analyze the

brain’s processing of symbols over time. We extended our windows of

analysis out beyond the onset of the four word choices to see how the

onset of word choices affects our ability to detect the semantics of the

word.We evaluated themodel pipeline on 50mswindows of EEGdata,

which reduces the dimensions ofDselected toℝ
ns×(ne∗ls), ls ≤ l.

3.3 Onset of acquisition analysis

We have shown that semantic representation of learned symbols can

be detected using EEG data collected after the second trial of a sym-

bol. Now we ask, by what trial can we detect the semantic mapping?

We averaged sets of three subsequent exposures in order to improve

the signal to noise ratio and ran our decoding pipeline on that average.

We compared the 2 vs. 2 accuracy for the earlier trials (e.g. trials 1–3)

to the later trials (e.g. trials 4–6) to test if we can measure the emer-

gence of a semanticmapping during the paradigm. As in Section 3.1, we

only considered participant–symbol pairs with six or more exposures,

to ensure an equal number of exposures are included in each group.We

compared the2 vs. 2 accuracy of averaged overlapping subsets of three

exposures, selected from the first six exposures.
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F IGURE 4 2 vs. 2 accuracy over time using 50mswindows of EEG
data. The x-axis denoteswindow start point (e.g., 25ms corresponds to
a window 25–75ms). Symbol onset is at 0ms, word choices at 500ms.
Statistically significant windows are highlighted in yellow (p < .001,
false discovery rate (FDR) corrected as described in Section 2.3)

Figure 5a shows the 2 vs. 2 accuracy over trials using a sliding win-

dowof three trails. Based on the results in Figure 4,we explored results

for two time periods: 0–500 ms (containing only EEG signal collected

before the onset of the word choices) and 0–700 ms (containing the

above-chance peak that occurred after the onset of the word choices).

Though there is a general upward trend as the data are drawn from

later trials,weonlymeasuredabove chance2vs. 2 accuracywhenusing

EEG data from trials (4, 5, 6) and the 0–700 ms time window. The 2 vs.

2 accuracy over trials (4–6) was slightly lower than the 2 vs. 2 accu-

racy reported in Section 3.1, because the latter analysis included tri-

als beyond the sixth exposure. We applied bootstrapping to generate

normal theory confidence intervals and confirmed a statistically signif-

icant difference in 2 vs. 2 accuracy between the first three trials (1–3)

and the later trials (4–6) (p < .05) when using the 0–700 ms time win-

dow. Thus, our model can detect the onset of the acquisition of symbol

meaning, but requires the more stable semantic representation that is

present after the onset of word choices.

Figure 5b shows the participant response accuracy (using the but-

ton press) for the first six presentations of a symbol. If participants

were perfect learners, we would expect to see participant accuracy

of 71% for the first trial of a symbol, averaged over all symbols in

all blocks. Because participants are not perfect, we observe a slightly

lower 63% participant accuracy on the first trial. By the sixth trial, par-

ticipants have an accuracy of 89%. Interestingly, the behavioral accu-

racy climbs much faster than our 2 vs. 2 accuracy using the EEG data.

This implies that, while the participants may be reliably choosing the

correct word choice by the second trial, the semantic representation is

not consistent enough to be detected using EEG data until trials (4–6)

are included. It is likely that many of the correct responses during the

first few trials are correct guesses rather than recalledmappings,which

is apparent when comparing to the 2 vs. 2 accuracy using EEG data. On

correct guess trials, the semantic meaning would not have been avail-

able during the viewing of the symbol, as the symbol occurs before the

onset of the word choices.

3.4 Electrode selection analysis

In addition to the timing of semantic representations, we were also

interested in the localization of semantic representations. Thus, we

explored the 2 vs. 2 accuracy using electrode groups, consisting of a

central electrode and its immediate neighbors (to help combat noise).

We analyzed three time windows: 0–500, 500–1000, and 0–1000 ms.

We expected that the semantic representation would be very dis-

tributed, as previously reported (Murphy et al., 2011; Mitchell et al.,

2008; Sudre et al., 2012; Huth et al., 2012, 2016).

The topographic interpolation of 2 vs. 2 accuracy for three timewin-

dows appears in Figure 6. We used the 2 vs. 2 accuracy of each elec-

trode group to annotate the 2 vs. 2 accuracy of the central electrode,

and electrodes above chance are shown as black circles.We saw lower

2 vs. 2 accuracies for the earlier time window (0–500 ms) compared

to the later time window (500–1000ms); however, we saw the highest

accuracies over theentire timewindow (0–1000ms).During theearlier

F IGURE 5 A comparison of behavioral and 2 vs. 2 accuracy. (a) The 2 vs. 2 accuracy when averaging three subsequent trials using twowindows
of time: 0–500 and 0–700ms. 2 vs. 2 accuracy increases notably for the average of trials (4, 5, 6), showing that learning has occurred. The asterisk
indicates the final value is significantly above chance (p < .001, FDR corrected). Error bars are not shown here, because data are averaged across
participants before the 2 vs. 2 accuracy is computed. (b) Behavioral accuracy for the first six trials of a symbol. Error bars show standard error over
the 25 participants. Assuming perfect learning, chance on the first trial should be 71%
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F IGURE 6 The results of a topographic analysis where each location represents an electrode and its immediate neighbors and color represent
themagnitude of the 2 vs. 2 accuracy. (a) 0–500mswindow (only symbol visible); (b) 500–1000mswindow (only word choices visible); and (c)
0–1000mswindow. Statistically significant groups are shown as black circles (p < .001, FDR corrected)

timewindow, the left hemisphere dominates, which is reasonable given

the left-lateralization of language. Note that the topography of the 0–

1000mswindow is very similar to the500–1000mswindow, indicating

that not much is gained by including the 0–500ms time period.

4 DISCUSSION

Wehave shown that we can detect newly acquired semantic represen-

tations using EEG with statistically significant 2 vs. 2 accuracy. While

previous work used the reward positivity ERP to show that learning

can be detected via EEG (Williams et al., 2020; Krigolson et al., 2014),

our work is the first to show that the product of that learning (i.e., the

semantic representation) can be detected.

Wewere able to achieve a2 vs. 2 accuracy of 69.15% in the semantic

representation analysis, which provides evidence that there is a strong

relation between the EEG data and the word vectors mapped to each

symbol. This confirms our hypothesis that we would see statistically

significant 2 vs. 2 accuracy. Previous decodingwork hasmostly focused

on MEG and fMRI (Mitchell et al., 2008; Sudre et al., 2012), but our

results show that a similar word decoding methodology can also be

applied to EEG data even when the paradigm differs (i.e., during word

learning). Murphy et al. (2009) explored decoding using EEG , but was

focused on two semantic categories of concrete nouns (tools andmam-

mals) while we expand to a much more varied vocabulary and utilize

a different paradigm based on reinforcement learning. Though EEG

has its limitations, it is sometimes preferable due to reduced cost and

improved portability overMEGand fMRI. The adaption of thismethod-

ology to EEG an important contribution, as EEG lowers the costs for

studying semantic representations by several orders of magnitude.

The 2 vs. 2 accuracy as a function of time within a trial showed

two peaks, one during the 150–200ms window (74.34%) and one at

600–650 ms window (74.57%). For contrast, we explored the results

described in the most similar previous work. However, it should be

noted that none of these experiments match ours along all dimensions

(words used, recordingmodality,word vectors, accuracymeasure used,

etc.). In particular, due to differences in signal quality inherent to the

modalities (EEG signals are more spatially smooth), EEG-based decod-

ing accuracy is typically lower thanwithMEG. Thus, the following com-

parisons aremeant only to give a sense ofwhat the underlying patterns

may be; it is not a properly controlled comparison.

In theirMEG experiments, Sudre et al. (2012) found that the decod-

ability of nouns rises above chancewhen using thewindow 50–100ms

after stimulus onset and peaks during the window 400–450 ms. Using

EEG, and nouns from one of two semantic categories, Murphy et al.

(2011) found that the Bhattacharyya metric of class separability in

time-frequency space peaked at 125 ms, and an optimal window for

classification started at 100ms. We expected that the onset of above

chance 2 vs. 2 accuracy would be later for our experiment, as partici-

pants must map each symbol to its English counterpart.

The onset of above-chance 2 vs. 2 accuracy occurs during the 125–

175 ms window. Thus, a delay may be present in our results. It is pos-

sible that using a newly learned semantic mapping slows the onset of

a semantic representation by about 75 ms compared to MEG (Sudre

et al., 2012), and 25 ms compared to EEG (Murphy et al., 2011). The

peak of 2 vs. 2 accuracy actually occurs 250 ms earlierwhen compared

to MEG, and 25 ms later in EEG. We hypothesize that we observed

an earlier 2 vs. 2 accuracy peak not because the word meaning was

recalled more quickly, but rather because the semantic representation

is not as rich and complex as in the participant’s L1, and so the neu-

ral activity is not sustained for the same length of time. Again, there

are several differencesbetweenour experiments and this relatedwork,

so a more controlled experiment will be needed to verify these initial

findings.

In our topographic analysis (Figure 6), during the 500–1000 and 0–

1000 ms windows, we saw a more distributed pattern with a strong

centroparietal component. Work using fMRI to study the representa-

tion of words from a participant’s L1 has also found the highest scoring

voxels were distributed across the cortex (Mitchell et al., 2008; Pereira

et al., 2018). However, our results disagree with the spatial analysis by

Sudre et al. (2012), who found thatmost ROIs (regions of interest) peak

before 500 ms, with some exceptions in the temporal lobe or frontal

lobes. Recall that our language-learning paradigm is quite different

than the single word viewing paradigm in Sudre et al. (2012), so these

differences may stem purely from that. It may also be the case that the

difference is partially attributable to the differences in spatial accuracy
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for MEG versus EEG. Or, it may be due to the additional work required

to retrieve meaning via a newly learned symbol mapping, which could

result in stronger activity in the left-lateralized language areas of the

brain. Alternatively, the differences may be due to the onset of word

choiceswhich appear at 500ms. Reading the Englishword-form at 500

ms may trigger a stronger, more distributed representation than read-

ing the symbol. The response to the English word-form may also be

more strong because the mapping to meaning is more rote. It is also

possible that, upon reading the word choices, the participant may con-

firm a mapping of which they were unsure, thus triggering a stronger

response than the symbol. Further experiments are required to

determine which of these factors contribute to the differences in the

topography of decoding accuracy.

It is notable that our stimuli were symbols rather than word-forms.

Because of this, we were able to disentangle some of the visual effects

present in typical reading paradigms. For example, word vectors are

correlatedwithword frequency (Hollis &Westbury, 2016), and shorter

words are, on average, more frequent than longer words (Piantadosi

et al., 2011). Because longer words will also take up more space in

the visual field and thus use more pixels, it is possible that the visual

signal alone could be used to predict the word vector, thus inflating

the 2 vs. 2 accuracy. Because frequency and length are correlated, it

becomesdifficult to remove this confound fromastimuli set.Ourword-

to-symbolmapping is totally arbitrary, and so our paradigm triggers the

semantics of the word without suffering from the typical visual con-

founds of the written word-form. However, there remains the possibil-

ity that participants are simply recalling the word-form without recall-

ing its semantic meaning, and that our models are thus able to decode

based on a phonological representation that is available in the EEG sig-

nal, rather than semantic representations. Though we cannot rule this

out, in previous work we have seen that, while word length does con-

tribute to decoding accuracy, it does not explain all of the decoding

accuracy (Fyshe et al., 2019).

Previous studies used written words alongside illustra-

tions (Mitchell et al., 2008; Sudre et al., 2012), and recent work

showed that decoding accuracy is higher when utilizing illustrations

for word context (Pereira et al., 2018). Critiques of this earlier work

have questioned if models were simply leveraging the brain’s visual

representations (e.g., dominant shapes or word length), suggesting

that decoding accuracy might not be related to word meaning. Indeed,

Sudre et al. (2012) determined the early onset of decoding accuracy

they observedwas correlated to the visual features of their stimuli (e.g.

word length or image diagonalness). Still, other studies have also shown

evidence of semantics earlier in time, such as (Moseley et al., 2013)

who were able to differentiate between semantic categories as early

as 150ms into the trial .

Because our mapping of symbols to words was totally arbitrary, our

results are strong evidence that word vectors truly correlate to the

brain’s representation of word meaning, and not some low-level visual

features of the stimuli. Although the mapped English word did become

visible as one of the four options at the 500 ms mark, we saw statisti-

cally significant 2 vs. 2 accuracy even when training on a period when

only the symbol is visible. It should be noted, however, that it is possible

that in the recall of the word, there are phonological signals that could

correlate to nonsemantic word features (e.g., word length). Thus, it is

possible that our methods are simply decoding the phonological signa-

ture of the word. So, while we have removed the visual confound, it is

not possible to completely eliminate all lower-level word features from

the detectable brain activity.

In previous work, participants were requested to visualize the con-

cepts while viewing words and images (Mitchell et al., 2008; Sudre

et al., 2012). In our experiment, participants were provided no instruc-

tions regarding visualization, only instructed to perform the reinforce-

ment learning task. This provides evidence that the semantic represen-

tations are detectable in amore complicated symbol-meaningmapping

task, not only when performing a visualization task. This also shows

that participants do not need to be coached to explicitly visualize the

concepts in order to detect semantics.

Our work also shows that the word vector approach generalizes to

different parts of speech. Many previous studies used only concrete

nouns (Mitchell et al., 2008; Sudre et al., 2012; Murphy et al., 2009).

Although the majority of our words were nouns, participants also saw

adjectives, pronouns, and verbs. Even concrete and abstract nouns

can have different electrophysiological attributes that make semantic

modeling amore complicated task (Barber et al., 2013).

5 RELATED WORK

Machine learning models applied to fMRI and EEG have allowed us to

track the flow of information in the human brain during word read-

ing (Mitchell et al., 2008; Sudre et al., 2012). EEG data, however, have

remained comparatively underutilized for the fine-grained distinction

of the meaning of individual words, possibly due to the challenges that

come with EEG data (e.g., lower spatial resolution, comparatively poor

signal-to-noise ratio). One of the first studies to successfully use word

vectors to differentiate word meanings with EEG was performed by

Murphy et al. (2009). In addition, theywere able to distinguish between

two semantic classes (land mammals or work tools) (Murphy et al.,

2009, 2011). Thedecoding accuracywas as high as 98%whenaveraged

over multiple analyses, providing evidence that EEG could give more

cost-effective exploration of brain-based semantics in more naturalis-

tic environments. Our study adds to the body of evidence that EEG can

be used to decode fine-grained semantic representations with signifi-

cant 2 vs. 2 accuracy, evenwhen those representations are evoked by a

newly learned L2–L1mapping.

Participant learning is oftenmeasuredwith the reward positivityERP

component (Proudfit, 2015; Krigolson et al., 2014). However, reward

positivity does not always coincide with learning-related behavioral

changes (i.e., task accuracy), making it potentially unclear if reward

positivity is related to a direct brain function related to learning, or

if reward positivity is an indirect effect related to receiving feed-

back (Walsh & Anderson, 2012). Previous work exploring the same

data analyzed here showed that ERP reward positivity signatureswere

at least indicative of behavioral measures of learning (Williams et al.,

2020). Our work provides another angle for comparison, as we mea-



10 of 11 FOSTER ET AL.

sured learning bydetecting the actual concept to be learned (here,word

meaning, as represented by a word vector) rather than measuring the

neural response to reward via an ERP component. Since our model

detects the semantic representation, it can be used to model both the

process of learning and the later retention of learning, whereas the

reward positivity only shows when learning has occurred. Thus, our

approach could offer benefits in experiments where it is important to

measure the retention of the mapping, or the robustness of the repre-

sentation.

Language learning is very complex and requires more than vocab-

ulary learning. Our study explores one of the first tasks in learning a

new language, the acquisition of a basic set of words. Previous work

has shown that once a person is fluent in an L2, the neural represen-

tation of a concept evoked by the two different languages are very

similar (Buchweitz et al., 2012). Though gray matter and white matter

changes have been documented over many weeks of language learn-

ing (Hosoda et al., 2013), the neural representations during the early

stages of vocabulary learning may be difficult to interpret. Work with

EEG has demonstrated the neural representation of language tomatch

the complexity of language itself (Vandenberghe et al., 2019). Themost

widely studied ERP components of language are the N400 and the

P600; however, language-related effects have also been demonstrated

in the N170, P300, and LPC (late positive complex) components (Van-

denberghe et al., 2019). Together, these components reflect aspects of

language including form, meaning, and use.

Indeed, language learning has been tracked with ERP components,

showing that the ERP signatures of a new language converge towards

that of the L1 after learning and consolidation (Vandenberghe et al.,

2019). For example, there has been a documented shift in the electro-

physiological correlates of language across learning; the N400 com-

ponent is emphasized early in learning, and the P600 component is

emphasized late in learning (Robert et al., 2018). As the N400 com-

ponent is theorized to reflect semantic processing of language and the

P600 component to reflect syntactic processing of language (Faretta-

Stutenberg & Morgan-Short, 2018), these findings may imply that

learning a novel language beginswith semantic considerations and sta-

bilizes with syntactic considerations. (Morgan-Shortt et al., 2010) had

participants learn an artificial language and interpret sentence struc-

tures that varied on grammatical accuracy—half of the sentences were

grammatically correct, while the other half presented syntactic viola-

tions (i.e., improper gender markings of adjectives or articles). They

found an N400 to persist from early to late in learning, and the P600

to emerge throughout learning. Thus, these findings demonstrate the

potential of EEG in the assessment of developing language capacities.

Moreover, it was shown that EEG could detect when a participant is

reading an unknown word (Schneegass et al., 2019), but it was unclear

if the signals of learning might dwarf those related to the semantic

representation of a newly learned word. To address the full complex-

ity of neural signatures in language and language learning would then

be to conduct a myriad of analyses (e.g., extract many different ERPs)

across a range of tasks. Our work hints at a more succinct method for

addressing the complex neural processes underpinning language and

language learning.

6 CONCLUSION

EEG can be used to detectwordmeaning, even for a symbol-based arti-

ficial language, and even during the process of language learning. We

presented several decoding analyses using different timewindows and

electrode groups to help characterize the brain’s representation of a

newly learned symbol mapping. This hints at several new directions for

studying brain function and the neural underpinnings of learning.
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Notes
1 Note that in this paragraph L1 and L2 correspond to the L1 and L2 norms

applied to regression weights, not to native and nonnative languages (L1

and L2).
2 Whereas a matrix is a table of numbers with two dimensions (rows and

columns), a tensor is an generalization of the matrix concept to include

matrix-like objects with an arbitrary number of dimensions. The tensors

described here have three dimensions, like the yellow, purple, and red

shapes in Figure 2.

REFERENCES

Barber, H. A., Otten, L. J., Kousta, S.-T., & Vigliocco, G. (2013). Concreteness

in word processing: ERP and behavioral effects in a lexical decision task.

Brain and Language, 125(1), 47–53.
Benjamini, Y., &Yekutieli, D. (2001). The control of the false discovery rate in

multiple testing under dependency. Annals of Statistics, 29, 1165–1188.
Buchweitz, A., Shinkareva, S. V., Mason, R. A., Mitchell, T. M., & Just, M. A.

(2012). Identifying bilingual semantic neural representations across lan-

guages. Brain and Language, 120(3), 282–289.
Faretta-Stutenberg,M., &Morgan-Short, K. (2018). The interplay of individ-

ual differences and context of learning in behavioral and neurocognitive

second language development. Second Language Research,1(34), 67–101.
Fyshe, A., Sudre, G., Wehbe, L., Rafidi, N., & Mitchell, T. M. (2019). The lexi-

cal semantics of adjective noun phrases in the human brain.Human Brain
Mapping, 40(15), 4457–4469.

Gu, Y., Celli, F., Steinberger, J., Anderson, A. J., Poeiso, M., Strapparava, C.,

& Murphy, B. (2014). Using brain data for sentiment analysis. Journal for
Language Technology and Computational Linguistics, 29(1), 79–94.

Hollis, G., & Westbury, C. (2016). The principals of meaning, Extracting

semantic dimensions from co-occurrence models of semantics. Psycho-
nomic Bulletin and Review, 23(6), 1744–1756.

Hollis, G., Westbury, C., & Lefsrud, L. (2017). Extrapolating human judg-

ments from Skip-Gram vector representations of word meaning. The
Quarterly Journal of Experimental Psychology, 70(8), 1603–1619.

Holroyd, C. B., &Coles,M.G.H. (2002). The neural basis of human error pro-

cessing: Reinforcement learning, dopamine, and the error-related nega-

tivity. Psychological Review, 109(4), 679.
Hosoda,C., Tanaka,K.,Nariai, T., Honda,M., &Hanakawa, T. (2013).Dynamic

neural network reorganization associated with second language

https://publons.com/publon/10.1002/brb3.2234
https://publons.com/publon/10.1002/brb3.2234


FOSTER ET AL. 11 of 11

vocabulary acquisition: A multimodal imaging study. Journal of Neuro-
science, 33(34), 13663–13672.

Huckin, T., & Coady, J. (1999). Incidental vocabulary acquisition in a second

language. Studies in Second Language Acquisition, 21(2), 181–193.
Huth, A. G., DeHeer,W. A., Griffiths, T. L., Theunissen, F. E., & Jack, L. (2016).

Natural speech reveals the semantic maps that tile human cerebral cor-

tex.Nature, 532(7600), 453–458.
Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous

semantic space describes the representation of thousands of object and

action categories across the human brain.Neuron, 76(6), 1210–1224.
Krigolson, O. E., Hassall, C. D., & Handy, T. C. (2014). How we learn to make

decisions:Rapidpropagationof reinforcement learningpredictionerrors

in humans. Journal of Cognitive Neuroscience, 26(3), 635–644.
Kuperberg, G. R. (2007). Neural mechanisms of language comprehension:

Challenges to syntax. Brain Research, 1146, 23–49.
Kutas,M.,&Hillyard, S.A. (1980). Reading senseless sentences:Brainpoten-

tials reflect semantic incongruity. Science, 207(4427), 203–205.
Luck, S. J. (2014). An introduction to the event-related potential technique. MIT

Press.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of

word representations in vector space. CoRR. http://abs/1301.3781
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013b). Dis-

tributed representations of words and phrases and their compositional-

ity. arXiv preprint arXiv:1310.4546.
Mikolov, T., Yih,W.-t., & Zweig, G. (2013c). Linguistic regularities in continu-

ous space word representations. In Proceedings of the 2013 Conference of
theNorth American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 746–751.

Mitchell, T., Hutchinson, R., Just,M., Newman, S.,Wang, X., Niculescu, R. S., &

Pereira, F. (2002). Machine learning of fMRI virtual sensors of cognitive

states.Magnetic Resonance Imaging, (1), 1–23.
Mitchell, T. M., Hutchinson, R., Just, M. A., Niculescu, R. S., Pereira, F., &

Wang, X. (2003). Classifying instantaneous cognitive states from FMRI

data. AMIA . . . Annual Symposium proceedings. AMIA Symposium, 2003,
465–469.

Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K.-M., Malave, V. L.,

Mason, R. A., & Just, M. A. (2008). Predicting human brain activity asso-

ciated with themeanings of nouns. Science, 320(5880), 1191–1195.
Morgan-Short, K., Sanz, C., Steinhauer, K., & Ullman, M. T. (2010). Second

language acquisition of gender agreement in explicit and implicit training

conditions: An event-related potential study. Language Learning, 1(60),
154–193.

Moseley, R. L., Pulvermüller, F., & Shtyrov, Y. (2013). Sensorimotor seman-

tics on the spot: brain activity dissociates between conceptual categories

within 150ms. Scientific reports, 3, 1928.
Murphy, B., Baroni, M., & Poesio, M. (2009). EEG responds to conceptual

stimuli and corpus semantics. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing (pp. 619–627). Associ-
ation for Computational Linguistics.

Murphy, B., Poesio, M., Bovolo, F., Bruzzone, L., Dalponte, M., & Lakany, H.

(2011). EEGdecodingof semantic category reveals distributed represen-

tations for single concepts. Science, 117, 131–138.
Murphy, B., Talukdar, P., & Mitchell, T. (2012). Selecting corpus-semantic

models for neurolinguistic decoding. In Proceedings of the First Joint Con-
ference on Lexical andComputational Semantics (pp. 114–123). Association
for Computational Linguistics.

Ng, A. Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational

invariance. In Proceedings of the Twenty-First International Conference on
Machine Learning (ICML), pp. 1–8. Journal ofMachine Learning Research.

Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N.,

Botvinick, M., & Fedorenko, E. (2018). Toward a universal decoder of lin-

guistic meaning from brain activation.Nature Communications, 9(1), 963.
Piantadosi, S. T., Tily, H., &Gibson, E. (2011).Word lengths are optimized for

efficient communication. Proceedings of the National Academy of Sciences
of the United States of America, 108(9), 3526–3529.

Proudfit, G.H. (2015). The reward positivity: Frombasic research on reward

to a biomarker for depression. Psychophysiology, 52(4), 449–459.
Robert, L., Alonso, J. G., Pliatsikas, C., & Rothman, J. (2018). Evidence from

neurolinguisticmethodologies: Can it actually inform linguistic/language

acquisition theories and translate to evidence-based applications? Sec-
ond Language Research, 1(34), 125–143.

Schneegass, C., Kosch, T., Schmidt, A., & Hussmann, H. (2019). Investigating

the potential of eeg for implicit detection of unknown words for foreign

language learning. In Human-Computer Interaction – INTERACT 2019 (pp.
293–313). Springer International Publishing.

Shinkareva, S. V., Mason, R. A., Malave, V. L., Wang, W., Mitchell, T. M., &

Just,M.A. (2008).Using fMRI brain activation to identify cognitive states

associatedwith perception of tools and dwellings. PLoS ONE, 3(1), 1–9.
Sudre, G., Pomerleau, D., Palatucci, M., Wehbe, L., Fyshe, A., Salmelin, R., &

Mitchell, T. (2012). Tracking neural coding of perceptual and semantic

features of concrete nouns.NeuroImage, 62, 451–463.
Vandenberghe, B., Perez, M. M., Reynvoet, B., & Desmet, P. (2019). The role

of event-related potentials (ERPS) as sensitive measures in L2 vocabu-

lary acquisition research. Journal of the European Second Language Associ-
ation, 3(1), 35–45.

Walsh, M. M., & Anderson, J. R. (2012). Learning from experience: Event-

related potential correlates of reward processing, neural adaptation, and

behavioral choice. Neuroscience & Biobehavioral Reviews, 36(8), 1870–
1884.

Wehbe, L., Murphy, B., Talukdar, P., Fyshe, A., Ramdas, A., & Mitchell, T.

(2014). Simultaneously uncovering thepatternsof brain regions involved

in different story reading subprocesses. PLoS ONE, 9(11), 1–19.
Williams, C. C., Ferguson, T.D., Hassall, C.D., Abimbola,W., &Krigolson,O. E.

(2021). The ERP, frequency, and time-frequency correlates of feedback

processing: Insights from a large sample study. Psychophysiology, 2(58),
e13722.

Williams, C. C., Hassall, C. D., Lindenbach, T., & Krigolson, O. E. (2020).

Rewardpredictionerrors reflect anunderlying learningprocess that par-

allels behavioural adaptations : A trial-to-trial analysis. Computational
Brain & Behavior, 3, 189–199.

Williams, C. C., Hecker, K. G., Paget, M. K., Coderre, S. P., Burak, K. W.,

Wright, B., &Krigolson,O. E. (2017). Theapplicationof reward learning in

the real world: Changes in the reward positivity amplitude reflect learn-

ing in a medical education context. International Journal of Psychophysiol-
ogy, 132, 236–242

Xu, H., Murphy, B., & Fyshe, A. (2016). Brainbench: A brain-image test suite

for distributional semantic models. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 2017–2021.
Association for Computational Linguistics.

How to cite this article: Foster, C.,Williams, C. C., Krigolson,

O. E., & Fyshe, A. (2021). Using EEG to decode semantics

during an artificial language learning task. Brain and Behavior,

11, e2234. https://doi.org/10.1002/brb3.2234

APPENDIX: Word list

The full list of words used in this experiment is: angry, artist, be, book,

cake, camping, car, cats, cinema, computer, dance, downtown, eager,

education, energy, fishing, go, happy, have, hike, home, hungry, I, impor-

tant, kind, late, library, map, market, mirror, money, musician, north,

paper, pencil, phone, plan, poor, power, restaurant, rich, ring, run, sad,

salesman, school, shirt, shoes, shopping, skate, smart, swim, teacher,

thirsty, tired, travel, we, work, you, young.
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