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Quantifying two-dimensional and three-dimensional
stereoscopic learning in anatomy using
electroencephalography
Sarah J. Anderson 1,2, Heather A. Jamniczky 3, Olave E. Krigolson 4, Sylvain P. Coderre5 and Kent G. Hecker 1,2

Advances in computer visualization enabling both 2D and 3D representation have generated tools to aid perception of spatial
relationships and provide a new forum for instructional design. A key knowledge gap is the lack of understanding of how the brain
neurobiologically processes and learns from spatially presented content, and new quantitative variables are required to address this
gap. The objective of this study was to apply quantitative neural measures derived from electroencephalography (EEG) to examine
stereopsis in anatomy learning by comparing mean amplitude changes in N250 (related to object recognition) and reward positivity
(related to responding to feedback) event related to potential components using a reinforcement-based learning paradigm. Health
sciences students (n= 61) learned to identify and localize neuroanatomical structures using 2D, 3D, or a combination of models
while EEG and behavioral (accuracy) data were recorded. Participants learning using 3D models had a greater object recognition
(N250 amplitude) compared to those who learned from 2D models. Based on neurological results, interleaved learning
incorporating both 2D and 3D models provided an advantage in learning, retention, and transfer activities represented by
decreased reward positivity amplitude. Behavioral data did not have the same sensitivity as neural data for distinguishing
differences in learning with and without stereopsis in these learning activities. Measuring neural activity reveals new insights in
applied settings for educators to consider when incorporating stereoscopic models in the design of learning interventions.
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INTRODUCTION
Advances in computer visualization enabling both 2D and 3D
anatomical representations have generated tools to aid percep-
tion of spatial relationships and provide a new forum for
instructional design.1,2 To date, studies examining the effective-
ness of these educational tools have been comparative, using
performance measurements as proxy variables for learning.3,4

Furthermore, many of these studies have not been designed to
allow for direct comparisons across conditions since implementa-
tion of substantially different instructional methods across
conditions confounds findings.5 In these cases, findings implicat-
ing 3D visualizations are invalid without controlling for the
influence of instructional methods. While these studies highlight
anecdotal enthusiasm for the use of new technology, conclusions
typically drawn from such studies imply 3D visualizations are
“better” than 2D, or yield no significant differences in learning.1,6–8

Beyond anatomy education, 3D visualizations have been
investigated in various disciplines particularly in science, technol-
ogy, mathematics, and engineering (STEM). Much of this work has
been conducted by researchers connected with the Spatial
Intelligence and Learning Center (https://www.silc.northwestern.
edu/) and has explored visuospatial learning from a cognitive
perspective. However, a caveat to the abundance of research
historically conducted in anatomy and STEM is that technological

limitations have necessitated that 3D visualizations be projected
on a 2D display. This means that the so-called 3D visualizations
achieve understanding of depth through monocular cues.9

Monocular cues require only one eye to perceive depth and
include cues such as relative size of objects, occlusion, shading,
and motion parallax (objects moving at different speeds based on
depth).10 Now that advances in stereoscopic 3D display technol-
ogy permit understanding of depth through both monocular and
binocular cues, a reexamination of these paradigms is pertinent.11

Stereoscopic displays take advantage of humans’ binocular visual
system by presenting two images from slightly different views,
called “stereo pairs”, to the right and left eyes such that the brain
interprets the images as one scene and assigns depth (stereop-
sis).9 Research in other disciplines has revealed that stereoscopic
displays are more beneficial when comparing distances, locating
or identifying objects, spatially manipulating objects, and navigat-
ing.12 Finally, a recent study by Wainman et al. in anatomy
education compared physical models to match 3D models
(projected on a 2D display) to isolate why physical models seem
to be superior to computer-based models.13 They were able to
rule out effects due to learning vs. testing environments as well as
the added haptic feedback derived from the ability to touch a
physical model as causal factors for superiority. Interestingly, when
they covered one eye (thus inducing monocular vision) any
advantages of the physical model over the 3D model (projected
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on the 2D display) were eliminated. Therefore, the presence or
absence of stereopsis appears to be a mitigating factor for learner
success.13

A key knowledge gap in the field of health professional
education is the lack of understanding of how the brain
neurobiologically processes information from different spatial
presentations of content during learning. There is a need for
carefully designed studies that isolate stereopsis as the true
manipulated variable in the experimental design thus avoiding
the methodological inconsistencies identified in prior work.9,12,14

By examining the neural mechanisms associated with learning
from 2D and stereoscopic 3D content, we may be able to more
directly understand differences and implications of stereopsis in
learning.
Event related potentials (ERP) measured by electroencephalo-

graphy (EEG) track learning using reinforcement-based learning
paradigms.15,16 Two key ERP components of interest are the N250
and reward positivity.
The N250 ERP component is a marker for, and increases in

amplitude with acquisition of, visual perceptual expertise.17–19

Stated otherwise, greater N250 activity is correlated with
heightened visual perception skills. The N250 ERP component
produces a negative deflection in the N2 ERP waveform, is
thought to be generated in or near the fusiform gyrus, and signal
is measured maximally over the posterior area of the scalp.20–22

Expertise in facial recognition has historically been one of the
most widely studied examples; however, research on discrimina-
tion within other specific categories has extended our under-
standing of processes once thought to be specifically face
selective.17,18,23,24 A series of experiments by Scott et al. examined
the N250 ERP component in a categorization training task using
nonface objects including different bird species17 and vehicle
models.18 Expertise in this case is the ability to make use of fine
detail information in order to categorize objects at the sub-
ordinate level. Scott et al. determined that visual training at the
subordinate level (for example, training to identify owl species
(snowy owl, burrowing owl, etc.)) rather than the basic level of
categorization (for example, to identify a bird as an owl instead
another type of bird (owl vs. wading bird)) led to improvements in
perceptual expertise for both trained and untrained examples.17

They found that the N170 and N250 ERP component mean
amplitudes correlated with acquisition of expertise. Specifically, it
was hypothesized that the N170 mediates basic-level category or
coarse object information (i.e., owl vs. other bird), while the N250
was only sensitive to training at the subordinate level and is
modulated by processing of finer detail required for subordinate
level discrimination (i.e., snowy owl vs. burrowing owl).17 In a
follow up study, participants learned to classify cars (sedans, SUVs,
and antiques) at the basic or subordinate level.18 This work
extended observations of the N250, noting increased amplitude is
still present 1-week post training in the subordinate level training
case and correlates to performance.18 Therefore, the N250 ERP
component reflects the acquisition of long-term memory for
perceptual categorization expertise at the subordinate (more
detailed) level.18 Increases in the N250, but not N170, as a result of
learning in a visual perceptual categorization task focussed on fine
detail, have supported the theory that N250 amplitude reflects
expertise in subordinate level object recognition.16

The reward positivity ERP component is associated with
internal evaluation of external feedback during learning.16,25,26

The reward positivity ERP component influences the N2 ERP
waveform, is sensitive to positive feedback, and represents
prediction error, quantifying the difference between actual and
expected outcomes when receiving positive feedback.16,26–28 In
early learning, reward positivity is greatest, pushing the N2
waveform in the positive direction. With increasing learning, the
prediction error underlying the reward positivity gets smaller, and
the influence of reward positivity on the N2 wave diminishes,

making the N2 waveform move in the negative direction. It is
believed that the reduction in reward positivity amplitude reflects
an underlying learning process. Meaning that the reward
positivity measurements will be greatest when active learning is
occurring, and will decrease once learning has occurred and the
learner is using recall. Our previous work confirmed prior
assertions of how these ERP components track with learning,
and extended these findings by examining retention and transfer
of knowledge 1 week following initial learning.15 We demon-
strated successful performance and continued maintenance of
the diminished reward positivity during retention activities as
well as when learners successfully transferred their knowledge to
a new context. Moving forward, extending examination of these
ERP components using learnable paradigms and real-world
contexts will inform neuroscientific understanding as well as
educational practices.15,29

The purpose of this study was to examine stereopsis in anatomy
learning by comparing changes in the amplitude of the N250 and
reward positivity ERP components, measured using a
reinforcement-based learning paradigm. Based on trial and error
with feedback, participants were to learn how to identify and
localize neuroanatomical structures while EEG data were recorded.
Participants in this study took part in two experimental visits.
During the first visit, participants completed the learning task
using either 2D, 3D, or a combination of 2D and 3D anatomical
models. Approximately 1 month later, all participants completed
an identical task that included both 2D and 3D models to assess
retention and transfer of knowledge. Importantly, to isolate the
role of stereopsis in learning, the only difference in learning
activities across experimental groups was whether anatomical
models were presented using stereopsis. Interleaved learning has
been shown to generate improved scores on final tests of
knowledge and is termed the interleaving effect.30 This effect is
thought to be particularly beneficial when learning to discriminate
between concepts that are subtly different since sequential
juxtaposition assists learners in distinguishing categories or
concepts from one another.30 By including a group of participants
that learned using both 2D and 3D models rather than just 2D or
3D alone during their initial learning task, we could examine
whether interleaving stereopsis generates similar effects in our
data as other research on interleaved learning.
The objective of this study is to provide objective evidence

comparing the effectiveness of 2D and 3D anatomical models for
learning, retention, and transfer, and the effects of interleaved
approaches for learning by measuring the N250 and reward
positivity ERPs. We predicted that as participants learned to
identify and localize anatomical structures, (a) N250 amplitude
would increase and remain elevated during retention exercises,
thus demonstrating heightened visual perception skills, (b) N250
amplitude would be greater when participants viewed 3D
compared to 2D models, given the additional depth cue to
facilitate increased object recognition, and N250 amplitude of
participants viewing both 2D and 3D models would be similar to
that of those viewing 3D models due to exposure to additional
depth cues provided through the 3D trials, (c) reward positivity
amplitude would decrease as ability to internally evaluate the
correctness of responses improved and amplitude would remain
diminished with successful retention, (d) learning from 3D models
would enable more efficient learning compared to 2D and result
in an earlier downward shift of the reward positivity amplitude,
and (e) learning from both 2D and 3D models as an interleaved
approach will improve long term retention and result in lower
reward positivity amplitude during retention tests in this group
compared to the 2D and 3D groups.
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RESULTS
Behavioral analysis
The mental rotations test31,32 confirmed that mental rotations
abilities did not differ among assigned experimental groups, F(2,
59)= 1.18, p= 0.32, η2= 0.04. Participants completed identifica-
tion tests to assess knowledge of cross-sectional brain anatomy
before and after each module. There was a significant effect of the
timing of these tests on knowledge performance, F(2.16, 122.87)=
570.60, p < 0.001, η2= 0.91). There were no significant differences
among groups in any pre- or post-test scores, F(2, 57)= 0.60, p=
0.55, η2= 0.02. Module 1 pretest score was low, 2D: 4.72%, 95% CI
[1.64, 7.81]; 3D: 1.91%, 95% CI [0, 4.76]; 2D/3D: 4.76%, 95% CI [1.91,
7.62]. Following the module, there was a significant increase in
performance on the post-test score (p < 0.001), 2D: 80.56%, 95% CI
[71.84, 89.27]; 3D: 84.64%, 95% CI [76.57, 92.71]; 2D/3D: 90.24%,
95% CI [82.17, 98.31].
Accuracy performance learning curves were generated by

plotting the proportion of correct answers (expressed as a percent)
against the block number for each module. The averaged learning
curves by condition for all participants are shown in Fig. 1a, and
indicated that the proportion of correct responses increased over
the five blocks in all conditions. There was a significant effect of
block number on neuroanatomical structure identification perfor-
mance, F(3.22, 580.24)= 315.15, p < 0.001, η2= 0.64. There were
no significant differences among groups, F(2, 180)= 3.04, p= 0.05,
η2= 0.03. Accuracy performance in the first block was as follows:
2D: 62.90%, 95% CI [58.85, 66.94]; 3D: 63.25%, 95% CI [59.41, 67.10];
and 2D/3D: 63.97%, 95% CI [60.12, 67.82]. Mean accuracy improved
across each block to the final block where mean accuracy was: 2D:
92.11%, 95% CI [89.50, 94.71]; 3D: 93.02%, 95% CI [90.53, 95.50];
and 2D/3D: 96.35%, 95% CI [93.87, 98.83].
Approximately 30 days following the first module, a knowledge

retention test was administered to the participants. There was a
significant lapse in knowledge compared to the post-test results of
the first module (p < 0.001); however, retention performance was
still significantly greater than the pretest of the first module (p <
0.001). Mean accuracy on the retention test was as follows: 2D:
33.47%, 95% CI [22.28, 44.67]; 3D: 30.30%, 95% CI [19.94, 40.66];
and 2D/3D: 31.13%, 95% CI [20.77, 41.50]. Following the second
module, there was a significant increase in performance on the
module two post-test score compared to the retention test as well
as the post-test of the first module (p < 0.05), 2D: 94.03%, 95% CI
[88.69, 99.37]; 3D: 92.14%, 95% CI [87.20, 97.09]; and 2D/3D:
97.26%, 95% CI [92.32, 100]. As in the first module, there were no

significant differences among groups in the pre- or post-test
scores, (p > 0.05).
The learning curves generated from the second learning

module indicate that the proportion of correct responses
increased over the three blocks in all conditions, as shown in
Fig. 1b. There was a significant effect of block number on
neuroanatomical structure identification performance, F(1.63,
284.19)= 113.25, p < 0.001, η2= 0.39. There were no significant
differences among groups, F(2, 174)= 0.86, p= 0.42, η2= 0.01.
Mean accuracy did not differ (p > 0.05) among groups for accuracy
performance in the first block of the second module, 2D: 82.13%,
95% CI [78.52, 85.74]; 3D: 84.25%, 95% CI [80.83, 87.67]; and 2D/
3D: 84.60%, 95% CI [81.26, 87.94].
However, there was a brief lapse in accuracy performance in the

first block of the second module compared to the last block of the
first module (p < 0.05). Performance in the first block of the second
module was similar to module one performance in block 3 in the
2D and 3D groups and block 2 in the 2D/3D group, (p > 0.05).
Accuracy significantly improved (p < 0.05) compared to the first
block for the remainder of the second module in all groups.

EEG data
For each experimental condition, analysis of the N250 and reward
positivity were performed independently. A participant’s data
were excluded if the electrode site of interest was excessively
noisy or >20% of trials were discarded due to artifacts. The
number of participants for each analysis was reduced as follows:
N250 Module 1 (2D: 15; 3D: 18; 2D/3D: 18), N250 Module 2 (2D: 16;
3D: 20; 2D/3D: 20), reward positivity Module 1 (2D: 18; 3D: 21; 2D/
3D: 18), and reward positivity Module 2 (2D: 18; 3D: 20; 2D/3D: 19).
Examination of the ERPs averaged to the onset of presentation

of the brain models revealed a bilateral posterior N250 (maximal
at channel O1).
During the first module (Fig. 2a), there was no effect of block

number on N250 amplitude, F(3.69, 553.98)= 1.32, p= 0.26, η2=
0.01. However, there was a significant difference among groups
for N250 amplitude, F(2, 150)= 10.96, p < 0.001, η2= 0.13.
Specifically, the N250 amplitude was significantly more negative
(p < 0.05) in both the 3D and 2D/3D groups compared to the 2D
group in all blocks.
During the second module, all participants completed an

identical exercise that employed 2D and 3D models equally over
three blocks (Fig. 2b). There was no effect of block number on
N250 amplitude, F(1.85, 304.50)= 0.95, p= 0.38, η2= 0.01, and

a b

Fig. 1 Learning curves showing changes in mean accuracy performance for each block of the modules for all participants. a Module 1. b
Module 2. Error bars indicate ±1 standard deviation
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there was no significant difference among groups, F(2, 165)= 0.74,
p= 0.48, η2= 0.01.
Difference wave analysis to confirm presence of the previously

reported reward positivity ERP component was performed by
comparing neural responses to correct vs. incorrect feedback.
Given that participant performance improved in this learning task,
difference wave analysis was only possible for the first learning
session where there were enough error trials to generate an ERP
waveform for response to incorrect feedback. The reward
positivity ERP component revealed was consistent with previously
reported results and was measured maximally at the FCz channel.
The peak latency of the difference wave was 284ms for 2D,
t(17)= 5.86, p < 0.001, d= 1.21; 296 ms for 3D, t(20)= 5.18, p <
0.001, d= 1.06; and 284ms for the 2D/3D condition, t(17)= 6.31,
p < 0.001, d= 0.91 (Fig. 3).
Following confirmation by difference wave analysis, we then

extended our analysis across both learning sessions to examine
changes in reward positivity amplitudes in response to positive
feedback. For this analysis, only trials where participants received
correct feedback were considered in each block and a grand
average ERP waveform was generated for each block under each

condition. Amplitudes of each waveform were compared from
5ms before to 5 ms after the peak latency.
During the first module, block number had a significant effect

on amplitude of response to positive feedback, F(3.69, 619.64)=
64.07, p < 0.001, η2= 0.28 (Fig. 4a). The amplitude of reward
positivity for learners in the 2D group did not differ significantly
amongst blocks 1–2 and 4–5 (p > 0.05), while blocks 4–5 reward
positivity amplitude in the 3D group did not differ significantly
amongst blocks (p > 0.05), and blocks 3–5 reward positivity
amplitude in the 2D/3D group did not differ significantly amongst
blocks (p > 0.05).
Across all groups reward positivity in response to positive

feedback followed a decreasing trajectory, meaning that with
learning, participants were less responsive to the feedback.
Interestingly, there was a significant difference in reward positivity
among groups, F(2, 54)= 5.89, p= 0.003, η2= 0.07. Reward
positivity was similar across all groups in the first block (p >
0.05), however reward positivity in the 2D/3D condition was
significantly different from both the 2D and 3D conditions in
blocks 2 and 3, and from the 2D condition in blocks 4 and 5 (p <
0.05).

a b

Fig. 2 Grand averaged N250 amplitude measured at O1 between 240 and 340ms. Negative is plotted up. a Module 1. b Module 2. Asterisk
indicates when N250 amplitude in the 3D and 2D/3D groups was significantly more negative (p < 0.05, RM_ANOVA, LSD post hoc) compared
to the 2D group. Error bars indicate ±95% confidence interval
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Fig. 3 Grand averaged reward positivity ERP waveforms for each group. The ERP waveforms measured at FCz indicate response to correct
feedback (black), response to incorrect feedback (light gray), and the difference waveform (colored) and associated scalp distributions
calculated by subtracting response to incorrect feedback from correct feedback. Negative is plotted up. a 2D. b 3D. c 2D/3D
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The amplitude of the reward positivity in the first block of the
second module compared to the last block of the first module did
not differ in any groups (p > 0.05). During the second module (Fig.
4b), block number had a significant effect on amplitude of
response to positive feedback, F(1.89, 317.97)= 19.81, p < 0.001,
η2= 0.11. For all conditions, the amplitude of reward positivity
was significantly different in the first block compared to the
following two blocks (p < 0.05).
There was also a significant difference among groups for

amplitude of reward positivity in the second module, F(2, 168)=
13.40, p= < 0.001, η2= 0.14. Specifically, the amplitude of reward
positivity was significantly decreased in the 2D/3D groups
compared to the other groups in all blocks (p < 0.05), and the
reward positivity amplitudes did not differ from each other in the
2D and 3D groups (p > 0.05).

DISCUSSION
The research presented here moves beyond assessing enthusiasm
and test performance while using 3D visualizations to evaluate the
role of stereopsis in anatomy learning by measuring changes in
neural activity as a more proximal quantitative dependent variable
to compare learning. The objective of this study was to examine
stereopsis in anatomy learning by comparing changes in the
amplitude of the N250 and reward positivity ERP components
measured in a reinforcement-based learning paradigm. We found
that participants learning from 3D models had greater object
recognition (N250 amplitude) compared to those who learned
from 2D models. Second, interleaved learning incorporating both
2D and 3D models provided an advantage in learning, retention
and transfer activities represented by decreased reward positivity
amplitude.
A key finding of this work is that 2D and 3D neuroanatomical

brain models were perceived differently. 3D learning yielded
greater object recognition, indicated by the greater N250
amplitude across blocks compared to 2D. This means that
stereopsis in the 3D condition may have provided an additional
cue that facilitated visual recognition. Despite decreased object
recognition when viewing 2D compared to 3D models, there was
no significant difference in the efficiency of learning between the
2D and 3D experimental groups from either performance accuracy
or reward positivity amplitude perspectives.

Unlike Krigolson et al., we did not observe an increase in N250
amplitude with learning.16,33 Since the increases in N250 observed
by Krigolson et al. were observed over at least 1000 trials, this may
mean that our modules (300 or fewer trials) were too short to
observe increases in the N250 amplitude. Despite an observed
increase in participants’ anatomical identification skills, the lack of
change in N250 amplitude suggests that these participants have
not yet developed object recognition skills at the expert level.
Experts would be expected to have greater N250 amplitudes
compared to these learners, but with greater exposure these
learners should demonstrate increases in N250 amplitude. Future
work exploring expertise should consider that there may be a
threshold below which expertise cannot be distinguished by N250
amplitude and that a minimum number of trials or exposures may
be required to observe expertise development.
An alternative explanation for our findings could relate the

difference in the N250 amplitude as a result of an increase in
perceptual processing demand. For instance, research on the
N250 has found increased N250 amplitudes for other-race than
own-race faces and found this reflects more effortful processing
demands.34 With respect to our work, the added element of
stereopsis may add processing demand and increase the N250
amplitude as a result. This hypothesis should be explored in future
work using analyses associated with working memory while
learning.
Despite learner preference for blocked or massed learning

designs,30,35,36 our work adds quantitative neurological evidence
to an increasing body of evidence suggesting that an interleaved
learning approach is more beneficial for knowledge retention.
Specifically, the combined 2D/3D task conferred a decreased
reward positivity amplitude advantage when learners were
acquiring skills during the middle of the first module and were
assessed for retention in the second module. This finding aligns
with prior examples of behavioral-based work showing that
interleaved learning improves test scores when distinguishing
similarly styled paintings of different artists37 and families of
birds,38 or when learning the appropriate strategies to answer
mathematics problems.39,40 Interleaved learning may provide
advantages over massed or blocked learning since it may draw
attention to the differences between categories of models shown
thus promoting generalization.37,41 The decreased reward positiv-
ity amplitude during the middle of the first module and all of the
second module may indicate that learners were cross applying

Fig. 4 Grand averaged reward positivity ERP amplitude at FCz in response to correct accuracy feedback across all blocks. Negative is plotted
up. a Module 1. b Module 2. Error bars indicate ±95% confidence interval. Asterisk indicates when reward positivity amplitude was
significantly more negative in the 2D/3D group than the 2D and 3D groups (p < 0.05, RM_ANOVA, LSD post hoc). Double asterisks indicate
when reward positivity amplitude was significantly more negative in the 2D/3D group than the 2D group (p < 0.05, RM_ANOVA, LSD post hoc)
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information from one dimension to another resulting in a more
consolidated memory incorporation. Future research experimental
designs incorporating interleaved learning may induce an earlier
appearance of changes in the N250 amplitude reflecting changes
in visual expertise development.
In this study, we were able to extend examination of reward

positivity to a scale more typical of educational studies by using a
retention interval duration of ~30 days. Studies of longer retention
interval durations have been limited. For example, neuroscientific
studies have examined reward positivity on a scale of hours or
several days and found maintenance of the reward positivity on
recall exercises.33,42 Our previous study extended these findings to
7 days and found results similar to Arbel et al.42 and Krigolson
et al.33 but also included intermediate learning exercises that likely
strengthened memory recall abilities.15

Here, we were able to examine maintenance of reward
positivity in the combined 2D/3D group, where learning exercises
were the same as the retention exercises. We demonstrated that
there was no lapse in reward positivity amplitude at the beginning
of the second module compared to the end of the first module
despite a lapse in behavioral accuracy performance. Unlike
performance accuracy, the reward positivity learning curve did
not exhibit a “forgetting curve”.43 This means that, despite the
lapse in performance accuracy, learners had not lost the ability to
internally evaluate their responses and were able to quickly
recover performance.
These findings indicate that visual recognition is enhanced

when learning using stereoscopic 3D models, which can inform
curricular design. Practically, the use of 3D models in teaching
should facilitate greater understanding of spatial nuances based
on the addition of depth cues. However, exclusive use of 3D
models should be avoided. Instead, teaching that includes both
2D and 3D models is likely the most advantageous, as it promotes
generalization of knowledge by forcing students to practice
moving fluidly between dimensions. To assess the influence of
stereopsis in more complex learning environments, carefully
controlled experimental designs to understand the interaction
amongst variables innate to real educational settings will be
required. This research is important since these variables may
have an additive effect to learner cognitive load and educators
should be conscious of overall cognitive load when designing
curricula.44

It is expected that since stereopsis adds complexity to a
visualization, there may be additional cognitive load experienced
by learners while interacting with the models. We also require
further research to better understand the critical features of
stereoscopic models that learners are using to differentiate
structures. In our case, to limit potential prior knowledge of
anatomical identification, we chose to teach internal brain
anatomy, which necessitated the use of cross-sectional models.
While the stereoscopic nature of the 3D models does add depth
cues that can be used to differentiate between structures, the area
where structures were pinned was planar. This means that some
3D learners could have been focusing on other cues like color or
screen location to differentiate structures.
In practice, 3D visualizations allow instructors and learners to

interact with models by moving and rotating them to reveal new
perspectives of anatomical structures. Since the cognitive
processes engaged when viewing stereoscopic 3D virtual
environments may more closely approximate real environments,45

added animation or rotation may generate advantages when
transferring knowledge to real world situations. However, if
models are animated or allow for rotation, there is potential that
this additional variable may also influence outcomes when
exploring stereopsis with regards to cognitive load.44 While this
work used static models to compare learning with and without
stereopsis, we need to better understand how interaction with
stereoscopic models may influence cognitive load.

When and how best different types of visualizations should be
incorporated into curricula and the frameworks used to present
this content should supported by informed pedagogy. This
research provides evidence supporting the use of traditional
reinforcement learning paradigms to build retainable foundational
knowledge in anatomy. Just-in-Time-Teaching (JiTT) modules are
opportunities for learners gain foundational knowledge by
engaging in learning activities prior to interaction with an
instructor.46 Incorporating reinforcement-based JiTT activities
showing anatomical content from both 2D and 3D perspectives
using an interleaved approach would release valuable in-class
time for educators to focus on deeper, more complex topics. Since
learning in this way entails a high number of retrieval instances
over a short time period, consolidation of knowledge into long-
term memory could be enhanced. Revisiting a module can further
enhance long-term memory retention, as predicted by distributed
practice theory.47 These benefits are clearly evident here, where
an increase in performance on the post-test of the second module
compared to the first is observed.
Finally, this work explores differences in learning at a group

level despite the fact that we know there are individual differences
across learners. This approach means that there is inherent
variability within the ERP data across subjects. This variability
carries into the grand average waveform thereby requiring greater
differences between groups to experimentally detect differences.
On one hand, this means that the differences in learning we are
observing are the result of significant differences neurological
activity, which adds confidence to our findings. However, on the
other hand, future work should both increase the number of
participants and examine individual learning curves to stratify
learners into more homogeneous groups (like low learners and
high learners) to determine if this reduces the variability in grand
average waveforms.16 This may allow us to detect more subtle
differences about how stereopsis affects learning across different
types of learners.
In this work, we have shown the advantage of using

neurological evidence to inform our understanding of the role
of stereopsis in learning. Experiments that are carefully designed
and make use of neurological variables (like the ones developed
here) will be essential to generate new insights about the
relationships between visual processing, learning, memory, and
cognitive load.
In conclusion, these findings provide new insight for educators

to consider when incorporating stereoscopic models in the design
of learning interventions. Our results provide quantitative
evidence of neurological differences generated while learning
from 2D vs. 3D models in anatomy education. Furthermore, our
data serve as an exemplar of how the reward positivity ERP
component changes with learning, retention, and transfer in an
educational setting. Finally, this study demonstrates the feasibility
of using a neuroeducational approach to distinguish nuanced
differences in learning beyond which behavioral measures alone
cannot permit.

METHODS
Participants
Sixty-one participants (37 females, mean age of all participants= 22.84
years (SD= 5.51) were recruited from health sciences programs at the
University of Calgary, Canada. Programs included: Bachelor of Health
Sciences, Bachelor of Biomedical Engineering, Bachelor of Biological
Sciences, Veterinary Medicine, Medicine, Nursing, and Graduate Sciences
Education. Participation was voluntary and informed written consent was
obtained in accordance with the Declaration of Helsinki. This study was
approved by the Conjoint Health Research Ethics Board at the University of
Calgary (Ethics ID: REB14–088).
Participants had minimal neuroanatomical knowledge of cross-sectional

brain anatomy, which was confirmed using an identification test prior to
the experimental task, thus all recruited participants were included in the
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study. Participants were randomly sorted into three groups: 2D learning
paradigm (19 participants, 12 females), 3D learning paradigm (21
participants, 12 females), and a combined group of 2D and 3D learning
(21 participants, 13 females).
Spatial abilities, particularly mental rotations abilities have been shown

to be a key predictor of success in learning anatomy.48–50 To confirm
mental rotations abilities did not differ between groups, as part of the first
visit we administered the redrawn 24-item Vandenberg and Kuse Mental
Rotations Test,31,32 which has been adapted from the Shepard and Metzler
Test.51 A test question consists of a single Shepard and Metzler-type
stimulus presented on the left with four alternative choices provided on
the right where two are matches, and a participant must successfully
choose which two are matches to get a point. Participants complete 24
questions broken into two sets with 3 minutes to complete each set. The
maximum test score possible is 24.32

All participants had normal or corrected to normal vision, and no known
neurological impairments. Each participant successfully passed a single
random-dot stereogram test of stereopsis, which required the participant
to detect a Δ1mm on-screen disparity.

Experimental design
The experimental design consisted of two experimental visits where
participants completed a computer-based learning module meant to teach
identification of cross-sectional neuroanatomy. During the visits, partici-
pants were seated comfortably in front of a 24′′ 120 Hz LCD monitor with a
resolution of 1920 × 1080 pixels, provided a standard USB gamepad to
respond, and EEG data were acquired. Participants were administered an
identification test prior to and immediately following modules to assess
knowledge. The first module was meant to teach participants how to
identify neuroanatomical structures in cross section while the second visit
was meant to assess retention and transfer of knowledge to models of
differing stereopsis. The second experimental visit occurred 29.97 days
(SD= 1.80) following the first visit. One participant from the 2D group was
unable to attend the second visit; all other participants completed all parts
of the experiment.

Stereoscopic neuroanatomical models
Digital brain models shown as coronal cross sections were created using a
cadaveric brain (from the University of Calgary Anatomical Specimens
Collection). An example of one of these models is shown in the
Supplementary Fig. 1. A sectioned brain was photographed from a 360-
degree perspective. Photogrammetry was performed to reconstruct 2D
images into 3D mesh and image overlays using Agisoft PhotoScan
(Professional Edition, http://www.agisoft.com). The above process was
repeated to create nine unique digital models (at increasing frontal cross
section depths of the same brain) to enable viewing of all anatomical
structures of interest. Next, each 3D mesh was resized and oriented in
space to match with the other models and exported using Blender (Version
2.78, www.blender.org). Each of the overlay images of the brain was
adjusted to have similar color, brightness, and contrast using Adobe
Photoshop CC (Version 2017.0.1). Finally, the meshes, corresponding image
overlays, and digital “pins” (to indicate structures of interest) were stored in
a database for the module.
To produce stereoscopic disparity, participants were fitted with NVIDIA

3D Vision® 2 goggles that were synchronized to the screen with an infrared
tether. For a stereoscopic 3D model, the “right eye” and “left eye” images
were generated from the models. These two images were sequentially
synchronized with the shuttering of the stereoscopic goggles (at 120 Hz)
such that the participant’s right eye always viewed the anatomical model
from the “right eye” perspective and the participant’s left eye always
viewed the anatomical model from the “left eye” perspective. Like real
world binocular vision, participants perceived these models to have
stereoscopic depth. However, for a nonstereoscopic 2D model, the monitor
remained in stereoscopic mode, and participants viewed two images from
the same perspective that were textured onto a plane at monitor-level
depth. This enabled all participants to wear the shutter goggles for the
duration of the experiment regardless of learning paradigm.

Reinforcement-based learning module
Questions were presented on the computer monitor during the modules
using a customized script created in Presentation® software (Version 18.3,
Neurobehavioural Systems, Inc., Berkeley, CA, www.neurobs.com). Modules
were designed based on a task adapted from Krigolson et al.16 and a

detailed description of this task is previously described in Anderson
et al.15,52 Briefly, participants were trained to identify and localize
neuroanatomical structures over a series of trials (questions) where labeled
neuroanatomical models were shown and participants were required to
answer whether a label for a structure was correct or incorrect. Through
training, participants were expected to improve their accuracy in
identifying neuroanatomical structures through trial and error, accom-
panied by positive and negative feedback based on the accuracy of their
responses. The following neuroanatomical structures were used: amygdala,
caudate nucleus, cingulate gyrus, corpus callosum, hippocampus,
hypothalamus, internal capsule, globus pallidus, putamen, and thalamus.
For each structure, three incorrect labels were purposely selected to serve
as proximal distractors from the other labels such that all ten structure
labels were equally used. For each structure the correct label was shown
50% of the time while one of the other three labels was shown the other
50% of the time. A trial consisted of the following components: a fixation
cross (400–600ms); an image of a brain with a pin indicating a structure of
interest (1500ms); a label for the structure was then added (50% chance of
being correct) and participants were required to respond indicating
whether the label was “correct” or “incorrect” using the gamepad
(maximum time allowed 2000ms); a fixation cross (600–800ms). Accuracy
feedback was then provided to participants in the form of an “✖” for
incorrect trials or “✔” for correct trials. Trials lasted ~5 s and were grouped
into blocks of 60 trials (~5min), participants were provided a rest period
following each block, and could advance to the next block when ready.
Accuracy and response time information were collected for each trial to
construct learning curves. On trials where participants were too slow to
respond, it was assumed that the participant would have been incorrect
and the maximum time allowed for a response (2000ms) was assumed for
analysis purposes.
During each module the anatomical structure shown in each trial was

randomized so that each structure was shown in equal distribution across
the blocks. This randomization occurs separately for each participant and
visit such that no participant sees the same order of questions when they
complete the modules, thus avoiding any interference from order effects.
The first module consisted of five blocks (300 trials total). During this
module participants viewed the anatomical models as 2D or 3D depending
on which experimental group they belonged to: 2D, 3D, or combined 2D/
3D. The combined group viewed the models randomly as 2D or 3D on a
trial-by-trial basis such that each was viewed 50% of the time. During the
second visit the module consisted of three blocks (180 trials total) where all
participants viewed the models in the combined 2D/3D format. The first
learning module was completed over ~30min, while the second module
was ~20min.

EEG data acquisition and analysis
We recorded EEG data during the learning modules from 16 electrode
locations on the scalp (FP1, FP2, AFz, FC5, FC6, FCz, C3, C4, TP9, P3, Pz, P4,
TP10, POz, O1, O2, plus ground, and reference) using an actiCAP Xpress
acquisition system arranged in a standard 10–20 layout (Brain Products,
GmbH, Munich, Germany) and Brain Vision Recorder Software (Version
1.20, Brain Products, GMbH, Munich, Germany). Electrode impedances
were kept below 20 kΩ. EEG data were sampled at a rate of 500 Hz and
amplified (V-Amp, Brain Products, GmbH, Munich, Germany: 0–500 Hz
bandwidth, 24-bit A/D conversion). A timing correction was applied using a
photosensor to realign the stimulus markers and EEG data.
EEG data were processed as in Anderson et al.15 using Brain Vision

Analyzer 2 software (Version 2.1, Brain Products, GmbH, Munich, Germany).
Data were rereferenced offline from a common reference to linked TP9 and
TP10 electrodes, and filtered using a phase shift-free Butterworth filter with
a 0.1–30 Hz passband and a 60 Hz notch filter. Here we used slightly more
stringent parameters for removing artifacts, where a trial was discarded if
the voltage on any channel exceeded 10 μV/ms gradient and 100 μV
absolute difference criteria.
Epochs for the N250 and reward positivity ERP components were

created. Grand average ERP waveforms were generated for each ERP
component for each block by averaging EEG epochs across all participants
for each experimental condition (2D, 3D, and 2D/3D).
For the N250, the event of interest was the appearance of the brain

image. We defined the N250 ERP component as the mean voltage from
240 to 340ms following presentation of the stimulus at electrode site O1.
This latency window was selected based on visual inspection of the grand
average waveforms and electrode site was reported for where the N250
amplitude was maximal.16–19
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For reward positivity, epochs were linked to positive feedback onset and
measured maximally at the FCz electrode site (overlying the medial frontal
cortex). Since the peak latency of the reward positivity varied across blocks,
the latency of the most negative peak between the P200 and P300 waves
was identified and the reward positivity was defined as the mean voltage
±5ms from this peak.

Statistical analysis
Statistical analysis was performed using SPSS Statistics (Version 24). One-
way ANOVA was used to determine if differences in mental rotations
abilities based on the assigned experimental groups were present. Paired
samples t-tests were used to compare the difference between response to
positive and negative feedback. Repeated measures analysis of variance
(RM-ANOVA) was used to compare behavioral changes (knowledge test
performance and block by block accuracy during modules) as well as
amplitude changes across the entire experiment, both for within and
among experimental conditions for N250 and reward positivity amplitudes.
Interaction effects were examined but not reported, as no significant
interaction effects were found. Least significant difference (LSD) post hoc
analysis was used to identify significant differences. An additional
Greenhouse–Geisser correction was applied to adjust the degrees of
freedom when Maulchy’s Test of Sphericity indicated that the assumption
of sphericity was violated. Effect sizes were determined by calculating
Cohen’s d (t-tests) and partial eta squared (η2, RM-ANOVA). An alpha level
of 0.05 was assumed for statistical significance in all tests.
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