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Abstract
Social species rely on the ability to modulate feedback-monitoring in social contexts to adjust one’s actions and obtain desired
outcomes.When being awarded positive outcomes during a gambling task, feedback-monitoring is attenuated when strangers are
rewarded, as less value is assigned to the awarded outcome. This difference in feedback-monitoring can be indexed by an event-
related potential (ERP) component known as the Reward Positivity (RewP), whose amplitude is enhanced when receiving
positive feedback. While the degree of familiarity influences the RewP, little is known about how the RewP and reinforcement
learning are affected when gambling on behalf of familiar versus nonfamiliar agents, such as robots. This question becomes
increasingly important given that robots may be used as teachers and/or social companions in the near future, with whom children
and adults will interact with for short or long periods of time. In the present study, we examined whether feedback-monitoring
when gambling on behalf of oneself compared with a robot is impacted by whether participants have familiarized themselves
with the robot before the task.We expected enhanced RewP amplitude for self versus other for those who did not familiarize with
the robot and that self–other differences in the RewP would be attenuated for those who familiarized with the robot. Instead, we
observed that the RewP was larger when familiarization with the robot occurred, which corresponded to overall worse learning
outcomes. We additionally observed an enhanced P3 effect for the high-familiarity condition, which suggests an increased
motivation to reward. These findings suggest that familiarization with robots may cause a positive motivational effect, which
positively affects RewP amplitudes, but interferes with learning.
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Introduction

As social creatures, a considerable part of our lives revolves
around interactions with other humans. However, due to the
increased availability of artificially intelligent agents in mod-
ern societies, our future social interactions will likely expand
to nonhuman agents, such as virtual avatars or robots (Wiese
et al., 2017). In fact, robots have already been implemented as
social assistants for elderly care to increase emotional comfort
(Birks et al., 2016; Tapus et al., 2007), in therapeutic settings
with children with autism spectrum disorder to practice social-
cognitive skills (Bekele et al., 2014; Warren et al., 2015), as
well as in rehabilitation settings to improve sensorimotor skills
(Basteris et al., 2014). Nonetheless, despite considerable prog-
ress in equipping artificial agents with social capabilities, they
are still limited in their ability to interact with humans in a
natural way (Wiese et al., 2017), and the public remains skep-
tical concerning the introduction of robot assistants to every-
day life (Bartneck&Reichenbach, 2005). Specifically, the use
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of robots as teachers or companions for children has been
discussed controversially due to concerns about privacy, re-
duced interest in human-human interaction due to attachment
to robot companions, and negative impacts on learning and
social development (Sharkey, 2016). While these concerns
should be taken seriously, there is a lack of empirical studies
systematically examining the impact of robots on social-
c o g n i t i v e p r o c e s s i n g , d e v e l o pm e n t a n d / o r
wellbeing. Because robots will employ social roles in society
and share our environments with us in the future, it is essential
to understand how to design them so that they can engage in
social interactions by activating relevant social schemes, be-
haviors, and emotional reactions without negatively impacting
human-human interactions and social-cognitive development.

A fundamental part of human interactions revolves around
monitoring the behavior of others, and adjusting our behaviors
accordingly to ensure a successful exchange of knowledge,
affiliation, and support (Insel & Fernald, 2004). In order to
be able to adapt our behavior to ever-changing environments
and learn from previous experiences, we heavily rely on feed-
back from others to be able to tell the difference between
behavior that is appropriate and behavior that is not.
Receiving positive feedback (e.g., smile) positively reinforces
a given behavior and increases the likelihood that it will be
shown again in the future; negative feedback (e.g., frown)
negatively reinforces a given behavior and decreases the like-
lihood that it will be shown again in future interactions
(Krigolson et al., 2009). This suggests that how we learn in
social contexts is a consequence of how we process (i.e., feed-
back monitoring) and are reinforced by (i.e., reinforcement
learning) feedback in the presence of others (Hobson &
Inzlicht, 2016). While the effect of human presence on feed-
back processing is relatively well understood, feedback pro-
cessing in the presence of robot agents has not been examined.
This question is of particular importance given that robots are
already used (and will be even more so in the future; Rahwan
et al., 2019) in educational and therapeutic settings where a
reduced response to feedback could have measurable negative
effects on learning outcomes. To address this issue, we
examined how feedback is processed in the presence of
robot agents and, in particular, whether the degree of
experience with a robot, based on prior interactions,
modulates reward-related processes.

Given the importance of reward processing for engaging in
satisfying social interactions (Chevallier et al., 2012), as well
as learning through social reinforcement in the presence of
others (Krigolson et al., 2009), it is surprising that the impact
of familiarity on reward-related processes has not yet been
examined with social robots. As a social species, we monitor
positive and negative outcomes and/or feedback from others
to calibrate our behaviors so that the likelihood for desired
outcomes is optimized (Holroyd & Coles, 2002). Feedback-
based adaptation can be examined electrophysiologically via

an event-related potential (ERP) components, such as the
Reward Positivity (RewP; Holroyd et al., 2008), a component
that is sensitive to rewards and appears to provide a reinforce-
ment learning signal (Holroyd & Coles, 2002). The RewP1

peaks between 200 and 300 ms after the presentation of feed-
back and is believed to originate from the dorsal anterior cor-
tex (dACC; Holroyd & Coles, 2002; Botvonick et al., 2004).
One paradigm that has traditionally been used and adapted to
examine feedback-monitoring is the gambling task (Gehring
& Willouby, 2002). In one variation, participants are shown
two differently colored squares (of which one is associated
with a higher chance of winning) and are asked over a con-
secutive sequence of trials to pick the square that is associated
with a higher chance of winning, followed by positive
(“Win”) or negative (“Lose”) feedback. Previous studies using
the gambling task have shown that greater RewP amplitudes
are observed on “Win” versus “Lose” trials, as well as when
gambling for oneself (“Self”) versus another person (“Other”;
e.g., Hassall et al., 2016; Krigolson et al., 2013). Specifically,
when strangers are the recipients of winning outcomes,
individuals experience attenuation of reward processing
compared with when gambling for themselves, because
they assign less value to the winning outcome (Hassall
et al., 2016; Krigolson et al., 2013).

Interestingly, the brain’s ability to monitor feedback in the
presence of others is altered by the social context in which a
task is performed, as well as the social identity of the other
entity. For instance, feedback monitoring has been modulated
when a person’s performance has a direct impact on their
partner’s performance (de Bruijn et al., 2011; Koban et al.,
2012), when the interaction is cooperative versus competitive
(de Bruijn et al., 2011; Radke et al., 2011; Van Meel & Van
Heijningen, 2010) or when the outcome of one partner’s per-
formance causes negative circumstances for the other partner,
such as experiencing pain (Koban et al., 2013). Critically,
previous studies have demonstrated that the mere presence
of others during the delivery of rewarding feedback can mod-
ulate feedback-monitoring (Simon et al., 2014). The presence
of a social in-group member compared with an out-group
member can attenuate the self-other difference in reward pro-
cessing (themotivation to win is higher when a similar other is
present; Hobson & Inzlicht, 2016), and reward processing is
enhanced when observing a friend versus a stranger perform a
gambling task (Leng & Zhou, 2010). These findings indicate
that the extent to which feedback is rewarding in social situa-
tions strongly depends on contextual factors related to the
situation and/or the interaction partner.

1 Note that an emerging view is that the feedback-locked signal of interest is a
positivity modulated by rewards, not a negativity modulated by losses
(Holroyd et al., 2008; Proudfit, 2015). Consequently, we operationalized our
feedback signal as the RewP, as opposed to the feedback-related negativity
(FRN) originally described by Miltner et al. (1997).

Cogn Affect Behav Neurosci



Goal of study

Given the important role of feedback processing for learning
during social interactions, as well as the need for robotic
agents to be perceived as social interaction partners in the
future, it is essential to understand to what extent humans
employ feedback-monitoring processes during human-robot
interaction. While reward processing in response to gambling
outcomes seems to be influenced by the degree of familiarity
between the player and the recipient of a reward in human-
human interaction (Leng & Zhou, 2010), little is known about
how the RewP is influenced in social contexts where humans
familiarize themselves with social robots. In the present study,
we used the gambling task to examine how participants pro-
cess reward in the presence of a social robot and to what
degree the magnitude of familiarity with the robot plays in
reward processing. We used the socially evocative robot
Cozmo, which allows participants to engage in social interac-
tion games via a mobile app. During the interaction, Cozmo
reacts by displaying positive/negative emotions when
winning/losing against the participant. Cozmo was chosen
for this experiment, because it was designed to be engaging
and promote positive social interactions; it also is a commonly
used robot platform when examining social cognition (e.g.,
empathy, emotion recognition, joint action, social learning,
trust) in interactions with mechanistic agents (Chaudhury
et al., 2020; Cross et al., 2019; Hinz et al., 2021; Lefkeli
et al., 2020; Pelikan et al., 2020, 2020; Zhou & Tian, 2020)
For a tutorial on how to use Cozmo as a research platform in
everyday interactions, see Chaudhury et al. (2020).

Because familiarity with social agents has been associated
with enhanced reward valuation, we hypothesized that partic-
ipants who familiarized with Cozmo before the task would
value rewards for themselves similarly to Cozmo (i.e., no
self-other difference in RewP for the high familiarity group),
whereas participants who did not familiarize with Cozmo
would value rewards that affect Cozmo to a lesser extent com-
pared to rewards that affect themselves (i.e., a self-other dif-
ference in RewP for the low familiarity group).

Methods and Materials

Participants

Forty participants were recruited from George Mason
University’s undergraduate population (mean age = 21.88,
range = 18-55, 27 females)2 in exchange for course credit.

Five participants were removed from data analysis due to
not following the task protocol (n = 3) or technical difficulties
with the robot (n = 2). Two participants had corrupted behav-
ioral data files and were excluded from the behavioral analy-
sis, but not the ERP analysis.3 All subjects were right-handed,
had normal or corrected-to-normal vision, and reported no
known neurological deficits, drug intake, or color blindness.
Subjects were pseudo-randomized into either the high-
familiarity condition (n = 17) or the low-familiarity condition
(n = 18). All data handling and collection was in accordance
with George Mason University’s ethics board. Based on prior
work in ERP methods and feedback monitoring (Hobson &
Inzlicht, 2016), we ran a power analysis using G*Power for a
Repeated measures mixed-ANOVA using medium effect size
(f = 0.25), an alpha of 0.05, power set to 0.8. The power
analysis suggested a total sample of 34 participants. All data
and power analysis results were uploaded to OSF (EEG data
were excluded due to file size restraints): osf.io/m685p/.

Apparatus

Participants interacted with a small tank Social Robot Cozmo
(Anki, CA). The Cozmo robot comes with three interaction
cubes that a participant can use to interact with Cozmo (e.g.,
tapping or moving the cubes). All interactions with Cozmo
were preprogrammed using the Cozmo mobile app. A picture
of the robot can be found on the OSF page. The gambling task
was programmed and presented using the MATLAB
programming environment (The Mathworks, Natick,
MA), functions from Psychtoolbox (Brainard, 1997), as
well as other custom scripts and functions. Behavioral
analyses were examined using R (version 3.6) with the
lme4 package (Bates et al., 2014).

Procedure

After providing consent, the researcher administered the
Snellen and Rosenbaum visual acuity tests, as well as the
Ishihara color blindness test. Participants were then fitted with
an EEG cap while they completed the questionnaires.
Participants were given a cover story and informed that the
experiment is a collaboration effort between the Psychology
department and the Engineering department. They were told
that the Engineering department is trying to decide which of
their robots to upgrade and that this experiment will help in-
form that decision. The level of familiarity with the robot was
manipulated through prior interaction, such that one group of
participants was provided the opportunity to interact with

2 Because an outlier in age was evident in our sample, we ran our ERP analysis
twice: once including the outlier, and once excluding them. Because the results
were the same (i.e., both analyses showed a significant main effect of famil-
iarity), we opted to include the participant.

3 To account for this discrepancy between the EEG data and the behavioral
data, we ran additional analyses that excluded those participants.We also ran a
nonparametric Bayesian analysis that mirrors the main analysis of RewP am-
plitudes to examine the probabilities of the observed and null effects. See
supplementary materials for details.
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Cozmo for 20 minutes before engaging in the gambling task,
whereas the other group of participants plays another interac-
tive game (the Simon game), for 20 minutes before engaging
in the gambling task. After this playtime, Cozmo was placed
underneath the computer screen for both groups (after being
briefly introduced for the participants in the Simon group),
where it sat still but made occasional eye blinks while partic-
ipants completed the gambling task.

Participants were instructed that they would be gambling
for themselves for a chance to win a gift card on half the
blocks, while gambling for new upgrades for Cozmo (e.g.,
batteries, new tank, etc.) during the other half of the blocks.
They also were instructed that the likelihoods for each block
were completely independent. Participants engaged in the
gambling task with an equal number of trials being “Self”
(i.e., gamble for oneself) versus “Other” (i.e., gamble for
Cozmo). At the mid-point of the experiment (i.e., after 16
blocks), participants completed the same interaction task
again based on the condition that they were assigned (i.e., if
they were in the high-familiarity condition, they interacted
with Cozmo, whereas if they were in the low-familiarity con-
dition, they played the Simon game) and then engaged in
another 16 blocks of the gambling task. The RewP amplitudes
were compared as an index of reward valuation.

Interaction Task

Participants were pseudo-randomized into either the high-
familiarity condition or the low-familiarity condition. In the
high-familiarity condition, participants interacted with
Cozmo, a tank robot and its cubes. The interaction task
consisted of two pre-programmed games: Keep Away and
Quick Tap. The objective of Keep Away was to hold one of
Cozmo’s cubes and push it towards Cozmo while it tries to tap
the top of the cube. If participants pulled the cube away from
Cozmo before it tapped the cube, the participant earned a
point. If Cozmo tapped the cube first, it gained a point. The
objective of Quick Tap was to play a color matching game
with Cozmo where one cube is placed in front of the partici-
pant and one cube was placed in front of Cozmo. Next, both
cubes would light up with a color. If the two cubes’ colors
matched, participants were to tap the cube before Cozmo did
(i.e., similar to a go-trial in a go/nogo task). However, if the
colors matched and the colors were red, then neither the par-
ticipant nor Cozmo were to tap the cube (i.e., no go trial).4

After each trial, a point was given to whoever tapped their
cube first (with the exception of the no-go trial where the other
player won the point if the cube was tapped on red). The order
of the two tasks were counterbalanced between participants.
Regardless of the outcome of the two tasks, participants were
always told that their and Cozmo’s scores were close, but that
they won. In the low-familiarity condition, participants played
the traditional Simon Says game using an electronic device
placed in front of them. The device would then play a random
series of tones and lights, and the participant had to imitate and
same sequence by tapping the lights in the correct order. The
Simon Says game was chosen due to its high similarity with
the Quick Tap game with Cozmo.

Gambling task

Participants completed a gambling task on behalf of them-
selves and Cozmo. During the gambling task, participants
were instructed to, based on trial and error, determine which
of two-colored squares produced a “winning” outcome more
often. Each trial started with a central fixation cross, which
was presented for 500 ms. Two differently colored squares
that were randomly generated by the experiment (i.e., to max-
imize the likelihood of presenting different color combina-
tions for each block) would then appear on either side of the
fixation cross. One color had a winning probability of 60%
(i.e., high winning probability), and the other color had a 10%
winning probability (i.e., low winning probability). Although
the color scheme would be randomly selected for each block,
the color of the squares would always appear as complemen-
tary colors (e.g., orange and blue). These colors would be
presented according to the same color scheme over the course
of the entire block. After the colored boxes had been presented
for 500 ms, the fixation-cross would change colors from black
to grey to indicate to participants that they should choose the
color that they think is associated with the higher winning
probability. The purpose of the change in color is to encourage
the participant to contemplate the odds of the reward prior to
responding. If the participant selected a square before the
change of color for the fixation cross, that trial was removed
from all analyses. The squares remained on the screen until the
participants responded with either the “2” key (with
their left index finger) to select the color on the left
or the “8” key (with their right index finger) to select
the color on the right. The probability of each colored
square being presented on the left or right side of the
screen was equiprobable. After participants responded,
feedback would be presented for 1,000 ms to inform
them about the gambling outcome (i.e., “win” or
“lose”). The inter-trial interval was jittered between
400-600 ms (Fig. 1).

Participants completed 32 blocks of the gambling task that
consist of 20 trials per block. Before the start of each block, a

4 While participants familiarized with Cozmo by playing against it, which can
be viewed as a competitive interaction, studies have shown that the
cooperation-competition dynamic is complex and that competition can lead
cooperation and pro-social behavior in certain instances (Cone & Rand, 2014;
Rabois & Haaga, 2002; Sage & Kavussanu, 2007; West, 2002), especially
when the interactions are framed in a cooperative sense (Bengtsson & Kock,
2000) and does not adversely influence the participant, which is the case in our
study.
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screen would be presented to the participant to indicate wheth-
er they were gambling on behalf of themselves “Self” or if
theywere gambling on behalf of Cozmo “Cozmo.” In essence,
subjects completed 16 blocks where they gambled for them-
selves or Cozmo, which equates to 640 trials overall. The
order of “Self” or “Cozmo” blocks were counterbalanced
across participants.

Electroencephalogram data recording and processing

The electroencephalogram (EEG) was recorded using a
Neuroscan NuAmps amplifier and SCAN 4.01 software
(Compumedics, North Carolina, USA). EEG data were col-
lected from 32 scalp sites (extended 10-20 system) using Ag/
AgCl electrodes mounted in an elastic cap. Ag/AgCl elec-
trodes also were placed at the left supraorbital and suborbital
sites, as well as the left and right outer canthal sites to monitor
vertical and horizontal electro-oculographic (EOG) activity,
respectively. All scalp electrodes were referenced to the left
mastoid (A1) online and re-referenced to the average of the
left and right (A2) mastoid offline. The in-cap ground elec-
trode was positioned just anterior to electrode Fz. EEG data
were collected at a sampling rate of 500 Hz and were filtered
online using a 0.1-Hz high-pass filter and a 70-Hz low-pass
filter. Impedance for all electrodes was maintained below 5
kilo-Ohms throughout the duration of the recording session.

EEG data were filtered offline using a 30-Hz low-pass filter
and then subjected to independent components analysis (ICA)

using Brain Vision Analyzer to identify and reject compo-
nents corresponding to blinks and saccades. Data were then
exported to EEGLAB (Delorme & Makeig, 2004), an EEG
processing toolbox for MATLAB, for all remaining process-
ing steps. Data were epoched from 200 ms before feedback
presentation to 800 ms following feedback, then subjected to
an automated amplitude rejection threshold of ±100 micro-
volts and a spectral rejection threshold of 50 dB (20-40 Hz
bandwidth) using the pop_rejspec function to remove EMG-
like activity. If more than 20% of trials were rejected for a
given channel, then that channel was removed from the
dataset. Channels that were removed were interpolated using
spherical spline interpolation. Epochs were baseline corrected
using a window spanning −200 ms to 0 ms relative to feed-
back presentation.

Questionnaires

Previous research has shown that motivational control is re-
lated to reward processes, which also is related to reward-
associated ERPs (Santesso et al., 2011). Specifically, trait-
based factors can influence if participants perceived outcomes
as rewarding or punishing (Santesso et al., 2011). Therefore,
we used the Gray’s Sensitivity to Reward Questionnaire
(SPSRQ: Torrubia et al., 2001) to ensure that any differences
observed in reward processing were not related to trait-related
differences. The SPSRQ also was used to ensure that the two
familiarization conditions were similar in reward sensitivity.

Fig. 1 Gambling task trial sequence. Participants were to complete a
gambling task on behalf of themselves or Cozmo. The gambling task
presented two colors in each block with one color having a higher

probability of winning (i.e., 60% chance of winning). After making a
choice, feedback was presented regarding whether they won or lost.
The ERPs were locked to the feedback.
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In addition, a handedness questionnaire was administered to
determine subjects’ preferences in handedness when
completing different activities and to ensure that sub-
jects were right-handed (e.g., which hand do you use
when you write, use a spoon, etc.).

Analyses

Electrophysiological data

The RewP was characterized as a difference wave of
feedback-locked EEG in which losses were subtracted from
wins, which were computed separately for each experimental
condition. Statistical comparisons were based on data derived
from electrode FCz, where the RewP was found to be of
maximal amplitude. Mean amplitudes were computed using
a 60-ms window (270-330ms) centered on the peak latency of
the grand average difference wave. RewP amplitudes were
statistically compared using a 2 x 2 repeated measures mixed
ANOVA with Ownership (Self vs. Cozmo) as a within factor
and Familiarity (High vs. Low) as a between factor. Post-hoc
t-tests were used to follow up any significant interactions. We
restricted our analysis to the difference wave between positive
and negative feedback because prior studies suggest that the
modulation in feedback-related negativity for positive and
negative feedback is mainly driven by reward-related mental
processes (Holroyd et al., 2008, 2011; Miltner et al., 1997).

We additionally examined the influence of familiarity and
ownership on the P3 amplitude, which we derived from the Pz
electrode, the site where the amplitude of the P3 was maximal
in the grand average parent waveform. Although we chose to
use the parent waveform for window selection, because a dis-
tinct P3 was not evident in the difference wave, mean ampli-
tude values were collected for statistical comparison from the
difference wave in a similar manner to the RewP. Statistical
comparisons were based on a 180-ms window (300-480 ms).
The larger P3 window is consistent with prior work that uses
larger time windows for analyzing P3 amplitudes (Gajewski
et al., 2008; Hilgard et al., 2014; Threadgill & Gable,
2020). Analysis of the P3 amplitudes were using a 2 x
2 repeated measures mixed ANOVA with Ownership
(Self vs. Cozmo) as a within factor and Familiarity
(High vs. Low) as a between factor.

Behavioral data

To examine participant’s performance in the gambling task,
we were interested in how quickly participants learned the
outcome of the gambling task (i.e., picking the correct color;
correct vs. incorrect). This metric, as opposed to actual perfor-
mance, allowed us to identify how quickly participants were
learning while removing any influence of chance that is due to
the probabilistic nature of the gambling task. To do this, we

constructed conditional growth curves, which tracked each
individual’s choice (i.e., a dichotomous variable) for each of
the different conditions using log-log mixed linear models on
each given trial. In a growth curve analysis, the first step was
to examine how the most basic model (i.e., the unconditional
model) would track participant’s individual performances.
This model contains whether a participant chose the correct
color (i.e., the high probability color) on each trial, regressed
onto a single predictor, which is the log-log function. This
model ignores any variance that is due to the experimental
procedure (i.e., not accounting for the Ownership and
Familiarity dummy variables). Next, we created a conditional
growth curve model by including the factors of interest into
the model as well as their interaction with the log-log function
predicting whether participants chose the high probability col-
or. Once the conditional growth model was constructed, we
compared the conditional growth model to the unconditional
growth model using a nested model comparison to test wheth-
er a more complex model accounts for more variance com-
pared to the unconditional model (i.e., a more parsimonious
model). Because nested model comparisons can favor com-
plex models if they account for more variance in the data, we
examined fit indices of the models, which allowed us to have a
ratio of variance explained to parsimony. We used the
Bayesian Information Criterion (BIC), because it generally
favors parsimony over variance explained (Konishi &
Kitagawa, 2008). Once a model of best fit was determined,
we examined the individual predictors in that model to see if
any of the predictors predicted participants learning perfor-
mance. Specifically, we were interested in examining the in-
teraction terms between the dummy variables (i.e.,Ownership
and Familiarity) and the log-log function as it allows us to
determine whether change overtime was different depending
on the factor. In essence, the growth curve model contained
Ownership, Familiarity, the growth term, the 2-way interac-
tion between the growth term and each dummy variable, and
their 3-way interaction as regressors.

Results

Questionnaire results

Results of the Welch two-sample t-tests did not indicate any
differences between our two samples (i.e., high-familiarity vs.
low familiarity) in handedness (t(30.24) = −0.63, p = 0.53).
There also were no differences in the BIS (t(33.9) = −1.11, p =
0.23), BAS reward (t(27.92) = −0.84, p = 0.4), BAS drive
(t(29.64) = −0.85, p = 0.4), and BAS fun (t(31.91) = −0.89,
p = 0.37), which indicates that the two samples were identical
on reward sensitivity. Cronbach’s alpha showed acceptable
reliability scores across all the reward sensitivity items (α =
0.89, 95% confidence interval (CI) [0.79, 0.93]) All degrees of
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freedom were adjusted for unequal variances in the two
groups. Demographic data as well as a breakdown of the re-
sults of BIS-BAS by gender can be found in Table 1.

Electrophysiological results

Results of the 2 x 2 repeated measures mixed ANOVA exam-
ining RewP amplitudes revealed a nonsignificant main effect
of Ownership (F(1, 33) = 0.27, p = 0.6, ηG

2 = 0.001), but a
significant main effect of Familiarity (F(1, 33) = 4.60, p =
0.03, ηG

2 = 0.1). The main effect was such that subjects in
the high-familiarity condition had higher RewP amplitudes
compared with the low-familiarity condition (MHigh-Fam =
4.13, SD = 2.4 vs. MLow-Fam = 2.44, SD = 2.57). The
Ownership x Familiarity interaction revealed a nonsignificant
effect (F(1, 33) = 0.33, p = 0.56, ηG

2 = 0.001). See Fig. 2.
Results of the ANOVA examining P3 amplitudes also re-

vealed a nonsignificant main effect of Ownership (F(1, 33) <
0.01, p = 0.95, ηG

2 < 0.001). The main effect of Familiarity
was significant (F(1, 33) = 4.74, p = 0.03, ηG

2 = 0.11), with
higher P3 amplitudes for participants in the high-familiarity
condition compared with those in the low-familiarity condi-
tion (MHigh-Fam = 2.76, SD = 2.98 vs. MLow-Fam = 0.72, SD =
2.74). The Ownership x Familiarity interaction was not sig-
nificant (F(1, 33) = 0.1, p = 0.74, ηG

2 < 0.001). See Fig. 3.

Behavioral results

The model of best fit revealed that the log-log function was a
significant predictor (b = 0.37, SE = 0.03, z(21760) = 10.38, p
< 0.001). The dummy variable for Familiarity was not signif-
icant (b = 0.04, SE = 0.25, z(21760) = 0.16, p = 0.87), the
dummy variable for Ownership was not significant (b = 0.13,
SE = 0.11, z(21760) = 1.21, p = 0.22), and the interaction of
the two dummy variables also was not significant (b = −17, SE
= 0.16, z(21760) = −1.02, p = 0.3). More importantly for our
analysis are the effects of the interactions with the growth
function. The interaction between the log-log function and
the dummy variable of ownership (i.e., Growth X
Ownership) revealed a nonsignificant interaction (b = −0.01,
SE = 0.05, z(21760) = −0.23, p = 0.81); however, the interac-
tion between the log-log function and the dummy variable for
Familiarity (i.e., Growth x Familiarity) was significant (b =
0.29, SE = 0.05, z(21760) = 5.22, p < 0.001), such that

participants in the low-familiarity condition learned at a faster
rate compared with subjects in the high-familiarity condition.
The three way interaction between the growth term, familiar-
ity, and ownership was not significant (b = −0.02, SE = 0.07,
z(21760) = −0.32, p = 0.74). See Fig. 4.

Discussion

The goal of the present study was to examine the role of
electrophysiological indices related to feedback processing
associated with learning during social interactions with robots.
We asked participants to either interact with Cozmo or per-
form a nonsocial task, then complete a learnable gambling
paradigm in which they could gamble on behalf of themselves
(i.e., Wins go to the participant) or Cozmo (i.e., Wins go to
Cozmo). Because previous studies have proposed that social
contexts have the ability to change feedback monitoring (e.g.,
feedback monitoring is altered when a social in-group mem-
ber is present; Hobson & Inzlicht, 2016), thus influencing
learning, we hypothesized that feedback-monitoring would
be altered when subjects familiarize themselves with an ani-
mate robot, Cozmo, by interacting with it. Specifically, we
hypothesized that participants who interacted with Cozmo
would exhibit enhanced RewP amplitudes, an electrophysio-
logical index associated with reward and reinforcement learn-
ing, when the outcome of the gambling task affected Cozmo
compared with the group that did not interact with Cozmo.
Additionally, we expected that participants who did not inter-
act with Cozmo would show reduced RewP amplitudes when
the outcome affected Cozmo in comparison to when the out-
come affected themselves, as previous work has shown that
outcomes affecting strangers were associated with inhibited
feedback processing (Hassall et al., 2016). Prior work has
suggested that motivational control is related to reward pro-
cesses and that these processes can influence reward related
ERPs (Santesso et al., 2011). Specifically, trait-based factors
can influence how rewarding and punishing outcomes
are perceived (Santesso et al., 2011). Therefore, we
used the SPSRQ sensitivity to reward questionnaire to
ensure that the differences that we find in RewP were
due to our manipulation and not due to SPSRQ differ-
ences between familiarization conditions.

Table 1 Demographic data

N Age Handedness BIS BAS reward BAS drive BAS fun

Females 27 21.9 16.2 4.30 3.74 3.74 3.81

Males 8 21.9 16 4.44 4.16 4.16 4.19

Demographic data breakdown based on the BIS-BAS scale.
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The findings revealed that RewP amplitudes were en-
hanced for participants who interacted with the robot com-
pared with subjects who did not. Additionally, contrary to
our expectation, no differences were detected in RewP ampli-
tudes when the outcome of the gambling task affected one’s
self or Cozmo for subjects who did not interact with Cozmo.
Results of the behavioral data suggest that when participants
familiarized themselves with Cozmo, they learned to discrim-
inate which of the two response options (colored squares)
would produce the “win” feedback at a slower rate compared
with when they did not interact with Cozmo. Taken together,
it is not surprising that slow learners (i.e., subjects who
interacted with Cozmo) had larger RewP amplitudes, because
they relied on the positive feedback signal to inform their
following behavior due to the fact that the difference between
the outcome of their behavior and the outcome of their desired
behavior was large (Holroyd & Coles, 2002; Schultz, 2017),
while fast learners (i.e., participants who did not interact with
Cozmo) did not have to rely on the feedback as it contained
information of little utility. This fast learning process

diminished their physiological responses to the feedback stim-
ulus as it carried less weight to inform future behavior. This
interpretation is in line with Holroyd and Coles’ (2002) theory
of Reinforcement Learning (RL-ERN). The RL-ERN theory
suggests that two types of prediction errors exist: a positive
prediction error (i.e., outcomes that are better than our expect-
ed outcome) and a negative prediction error (i.e., outcomes
that are worse than our expected outcome). It is believed that
the RewP tracks this difference between our expectation and
the actual outcome. While both prediction errors elicit a feed-
back response, fast learners have a diminished difference be-
tween their expectations and the actual outcome, thus
resulting in smaller RewP amplitudes. Moreover, the rein-
forcement learning theory suggests that once fast learners
learn a task, they place more weight on their own re-
sponses to inform their following behaviors as opposed
to the feedback that they are provided (Holroyd &
Coles, 2002; Krigolson et al., 2009).

We also observed that the P3 component was affected by
our experimental manipulation in a manner that mimics the

Fig. 2 Mean amplitudes of the RewP (at electrode FCz). The RewP is a
difference wave between ERPs that are time-locked to the onset of Win /
Loss feedback. The statistical analyses of RewP amplitudes were based
on a time window of 270-330 ms, which was centered on the peak of the
grand average waveform. The time-window is illustrated by the shaded
region. The topographic plots (collapsing across Cozmo and Self

gambling conditions) illustrate that the RewP is indeed maximal at elec-
trode FCz. A graph of the parent waveforms can be found in the supple-
mentary materials; see Figure S3. The raincloud plot illustrates the mean
amplitudes, the individual data points as well as the distribution of the
data. Error bars represent the standard error of the mean. Asterisks repre-
sent significance at the 0.05 level.
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RewP. This raises the possibility that the observed effect for
the latter could be attributed to component overlap. Although
there is a parietal local maximum evident in the nonfamiliarity
condition, it is distinct from the frontocentral maximum

observed for the RewP. The P3 was quantified using an anal-
ysis window based on the parent waveforms, which suggests
that P3 peak latency (354ms) was ~50ms later than that of the
RewP (300 ms). Moreover, the topography of the P3 is

Fig. 3 Mean amplitudes of the P3 (at electrode Pz). Similar to the RewP,
the P3 shown is a difference wave between ERPs that are time-locked to
the onset of Win/Loss feedback. The statistical analyses were based on
time-window of 300-480 ms and is illustrated by the shaded region. The
topographic plots (collapsing across Cozmo and Self gambling

conditions) illustrate that the P3 is indeed maximal at electrode Pz. A
graph of the parent waveforms can be found in the supplementary mate-
rials; see Figure S4. Error bars represent the standard error of the mean.
Asterisks represent significance at the 0.05 level.

Fig. 4 Full results of the conditional growth curve model. The
conditional growth model revealed a significant difference in learning
rates between the high-familiarity (i.e., left panel) and low-familiarity

conditions (right panel). However, no differences in learning rates were
detected when subjects gambled on behalf of themselves (i.e., gray) or
Cozmo (i.e., yellow), regardless of the condition.
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distinctly parietal (in fact, for the low-familiarity condition, it
was maximal at parietal and occipital sites). These findings
suggest that the P3 is not the primary factor contributing to the
differences observed for the RewP, although we cannot
completely rule out this possibility. Nevertheless, the finding
of a significant effect for the P3 has theoretical implications
for the study (see below).

One possibility as to why participants in the Cozmo group
had enhanced RewP amplitudes could be because social inter-
actions can enhance intrinsic motivations (Tauer &
Harackiewicz, 2004), which influences reward processing
(Mace et al., 2017; Wilhelm et al., 2019). This claim is sup-
ported by the Optimizing Performance Through Intrinsic
Motivation and Attentional Learning (OPTIMAL) theory of
motor learning that posits that motivational factors and atten-
tional factors, which can be enhanced via social interactions
and external factors, have the capability of improving learning
performance (Wilhelm et al., 2019; Wulf & Lewthwaite,
2016). In other words, participants who interacted with
Cozmo were more intrinsically motivated to perform well on
the task. Our finding of increased P3 amplitude in the high-
familiarity condition is consistent with the suggestion that this
condition was associatedwith increasedmotivation, given that
a number of studies have linked the P3 to motivation for
reward (Franken et al., 2011; Hughes et al., 2013; Yeung
et al., 2004). However, this account does not explain why
reward processing was associated with lower learning rates
and future work should investigate this question. Here we note
that other work has suggested that an immersive and enriched
environment can hinder performance. This hindrance also is
associated with descriptive increases in RewP (Lohse et al.,
2020). This is a similar pattern to what we observed and could
be explained by participants who interacted with Cozmo hav-
ing experienced social enrichment. Such enrichment could
have increased arousal and positive affect—possibly partially
explaining the increase in RewP—while simultaneously re-
ducing performance, as a result the social component of the
environment creating a distraction from the task. The finding
that, in the high-familiarity condition, an increase in amplitude
of the P3 occurred in conjunction with an increase in the
RewP suggests that generalized arousal (Luck, 2014;
Rozenkrants & Polich, 2008) could explain the dissociation
between RewP amplitude and behavioral performance.
However, because the ERP waveforms did not diverge until
relatively late in time, it remains possible that a more selective
impact on reward processing associated with differing learn-
ing rates, as described above, is capable of explaining the
relation between physiology and behavior. Similar research
that has examined the use of social agents, avatars, and robots
in learning environments has consistently found that these
social agents can serve as distractors, which can hinder peo-
ple’s ability to learn (Kennedy et al., 2015; Momen et al.,
2016; Yadollahi et al., 2018).

One remaining question is why participants did not value
rewards more highly for themselves in comparison to Cozmo
in the low familiarity condition (i.e., no RewP or learning rate
difference when gambling for Self vs. Cozmo in the no inter-
action condition). One possible explanation is that the mere
presence of an entity with somewhat social features might
have been sufficient to increase participants’ motivation to
do well when gambling for the robot. This interpretation
would be in line with previous studies on social facilitation
showing that the mere presence of other human (Zajonc,
1965) or nonhuman (e.g., robots; Riether et al., 2012) entities
positively impacts performance on easy tasks, but negatively
impacts performance on difficult tasks, including gambling
tasks (Lemoine & Roland-Lévy, 2017). In line with this inter-
pretation, it was suggested that the presence of a social agent
could positively affect attentional processes to a similar extent
as monetary rewards (Anderson, 2016), which could have
been sufficiently motivating to equalize any differences in
reward processing between Self and Cozmo conditions.

We acknowledge some limitations in the current study.
While we discuss the findings in our study of how interactions
with a social agent can influence performance and learning,
colleagues suggest that a distinction should be made between
the two processes (Cahill et al., 2001). In other words, while
we make inferences about learning outcomes from partici-
pant’s performance, we acknowledge that learning is a com-
plex process that is affected by a wide array of factors. For
example, temporal dynamics of our manipulation could have
an influence on performance (i.e., does performance hold up
after a long period of interaction with an artificial agent?). This
point needs to be made to ensure proper scientific rigor in
experimental design (i.e., the need to control for other vari-
ables is important). This also suggests that future studies
should design experiments that are able to make claims about
learning that occurs over long periods. Lastly, it is important
to acknowledge that, as the interaction with Cozmo involved a
competitive task, participants in the high-familiarity condition
may have been predisposed to experience greater reward pro-
cessing as a result of being motivated by the competitive na-
ture of the engagement task. In line with this idea is work
showing that the RewP is enhanced when tasks are performed
in a social context (Wilhelm et al., 2019), even when the social
context involves insults that promote anger in the participant
(Threadgill & Gable, 2020). Threadgill and Gable (2020) pos-
it this could be due to the pleasurable feeling associated with
revenge. In future work, it would be informative to include a
noncompetitive or cooperative engagement task to determine
whether tasks that induce emotions of differing valence im-
pact reward processing.

These findings have several implications for both social
cognition and the field of human-robot interaction. First, the
findings of the present study add to the body of literature
investigating the influence of social context on feedback
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monitoring. While research has shown that the RewP is mod-
ulated based on non-social factors (e.g., magnitude of reward),
social factors can also affect feedback monitoring. The find-
ings also provide additional data, which align with the rein-
forcement learning theory. This study also has several impli-
cations for the field of human-robot interaction (HRI). Our
data suggest that we are able to perform certain tasks on behalf
of robots when we familiarize with them (i.e., no difference in
feedback monitoring when others gambling). The data also
suggest that the use of social robots in learning settings may
have a detrimental effect on learning. While using social ro-
bots may provide benefits in some settings (e.g., clinical set-
tings), roboticists and technology adaptors should be wary
about including animate and social agents in learning environ-
ments as they could hinder learning and performance.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13415-021-00895-9.
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