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The present study tested whether energy-minimizing behaviors evoke reward-related

brain activity that promotes the repetition of these behaviors via reinforcement learning

processes. Fifty-eight healthy young adults in a standing position performed a task where

they could earn a reward either by sitting down or squatting while undergoing electro-

encephalographic (EEG) recording. Reward-prediction errors were quantified as the

amplitude of the EEG-derived reward positivity. Results showed that reward positivity was

larger on reward versus no reward trials, confirming the validity of our paradigm to

measure evoked reward-related brain activity. However, results showed no evidence that

sitting (versus standing and squatting) trials led to larger reward positivity. Moreover, we
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found no evidence suggesting that this effect was moderated by typical physical activity,

physical activity on the day of the study, or energy expenditure during the experiment.

However, at the behavioral level, results showed that the probability of choosing the

stimulus more likely to lead to sitting than standing increased as the number of trials

increased. In addition, results revealed that the probability of changing the selected

stimulus was higher when the previous trial was a stand trial relative to a sit trial. In sum,

neural results showed no evidence supporting the theory that opportunities to minimize

energy expenditure are rewarding. However, behavioral findings suggested participants

tend to choose the less effortful behavioral alternative and were therefore consistent with

the theory of effort minimization (TEMPA).

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Imagine your supervisor calls you to their office to give you a

bonus check. Upon learning that you earned the reward,

would its value change if you knew you had to walk several

flights of stairs as opposed to being able to take an elevator

ride, equal in time, to retrieve it? The answer to this question

has implications for one's level of physical activity. Most in-

dividuals are now cognizant of the positive effects of regular

physical activity and have the intention to be active (Martin,

Morrow, Jackson, & Dunn, 2000; Canadian Fitness & Lifestyle

Research Institute, 2008). Yet, this intention is often not suf-

ficient to engage in physical activity (Rhodes & Dickau, 2012).

A recent study involving 1.9 million participants showed that

more than a quarter of all adults are physically inactive, which

extrapolates to more than 1.4 billion adults when considering

the world population (Guthold, Stevens, Riley, & Bull, 2018).

Some other results are even more concerning, especially in

the United States, where more than 95% of adults fail to

accumulate the recommended 30 min of moderate-to-

vigorous physical activity on at least 5 days per week

(Troiano et al., 2008). This high prevalence is concerning

because physical inactivity involves higher risks of cardio-

vascular disease (Wahid et al., 2016), hypertension (Liu et al.,

2017), diabetes (Aune, Norat, Leitzmann, Tonstad, & Vatten,

2015), cancer (Moore et al., 2016), depression (Boisgontier et

al., 2020; Schuch et al., 2017), obesity (Bleich et al., 2018), and

mortality (Ekelund et al., 2019) with 6e10% of all deaths from

non-communicable diseases worldwide attributed to physical

inactivity (Lee et al., 2012).

It has been speculated that this failure to be physically

active may be explained by automatic reactions toward

stimuli that are related to physical activity behaviors (Conroy

& Berry, 2017). These automatic reactions may disrupt the

implementation of behavioral goals grounded in reflective

motivation (Strack & Deutsch, 2004). Experimental studies

testing these automatic reactions show that stimuli related to

physical activity automatically attract attention (Berry, 2006;

Berry, Spence, & Stolp, 2011; Calitri, Lowe, Eves, & Bennett,

2009; Cheval, Orsholits, et al., 2020), and trigger automatic

affective reactions (Bluemke, Brand, Schweizer, & Kahlert,

2010; Conroy, Hyde, Doerksen, & Ribeiro, 2010; Rebar, Ram, &

Conroy, 2015) as well as approach tendencies (Cheval,

Tipura, et al., 2018; Cheval, Sarrazin, Boisgontier, & Radel,
2017; Cheval, Sarrazin, Isoard-Gautheur, Radel, & Friese,

2015; Cheval, Sarrazin, & Pelletier, 2014; Farajzadeh et al.,

2023). These effects are stronger in active individuals, but

inactive individuals generally demonstrate similar positive

automatic reactions toward physical activity. Taken together,

these results suggest that automatic reactions can support

physical activity behaviors in both active and inactive in-

dividuals, which contrasts with the current pandemic of

physical inactivity (Kohl et al., 2012). These results also sug-

gest that automatic reactions toward physical activity can

hardly explain this pandemic.

The recent theory of effort minimization in physical ac-

tivity (TEMPA) suggests that an automatic attraction toward

behaviors minimizing energetic cost, which may be inher-

ently rewarding, could explain the inability to transform in-

tentions to be physically active into actions (Cheval &

Boisgontier, 2021; Cheval, Radel, et al., 2018). The repeated

failure in counteracting this automatic attraction may partly

explain the pandemic of physical inactivity (Boisgontier &

Iversen, 2020). A positive bias toward lower energy expendi-

ture has been evidenced in decision-making and learning

tasks (Klein-Flügge, Kennerley, Friston, & Bestmann, 2016;

Palidis & Gribble, 2020; Pr�evost, Pessiglione, M�et�ereau, Cl�ery-

Melin, & Dreher, 2010; Skvortsova, Palminteri, & Pessiglione,

2014). In the study by Klein-Flügge et al. (2016), participants

were asked to make a series of choices between two options,

which independently varied in required grip force and reward

magnitude. The monetary reward ranged from 10 to 40 pence

and required effort ranged from 20% to 80% of maximum grip

force. Similarly, Skvortsova et al. (2014) used a probabilistic

instrumental learning task with binary choices (left or right)

and four possible outcomes: two reward levels (20¢ or 10¢)

times two effort levels (80% and 20% of maximal force). Par-

ticipants were encouraged to accumulate as much money as

possible and to avoid making unnecessary effort. In the study

by Palidis and Gribble (2020), participantsmade binary choices

that probabilistically affected whether they were asked to

accurately produce a low or high level of quadriceps activation

to earn a reward. Electroencephalographic (EEG) activity time-

locked to feedback about whether they earned the reward for

accurate force production was assessed. Results showed par-

ticipants were more likely to change their response from the

previous trial if it led to high effort. Results also showed that

reward-related brain activity was greater when participants

received reward feedback on high effort trials. These results
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are consistent with findings showing individuals learn to

make decisions to avoid high physical effort but, paradoxi-

cally, value rewards obtainedwith high effortmore than those

obtainedwith low effort (Inzlicht, Shenhav,&Olivola, 2018). In

the study by Pr�evost et al. (2010), participants decidedwhether

it was worth investing in a stronger effort using a hand grip to

see an erotic picture clearly for 3 sec or to invest in a small

effort to see the picture for 1 sec. These four studies showed

that during choices involving monetary or erotic reward and

physical effort the brain serves as a choice comparator for

effort-reward trade-offs (Klein-Flügge et al., 2016) with be-

haviors associated with higher physical effort being avoided

(Palidis & Gribble, 2020) and devalued (Pr�evost et al., 2010;

Skvortsova et al., 2014). In line with the theory of effort

minimization, experimental results suggest that a high ten-

dency to approach stimuli related to sedentary behaviors can

contribute to explain the gap between intentions to be phys-

ically active and actual physical activity (Cheval et al., 2015).

Other results suggest sedentary stimuli require more inhibi-

tory control to avoid relative to physical activity stimuli

(Cheval, Daou, et al., 2020) and that avoiding sedentary stimuli

requires higher brain activity linked to inhibitory control and

conflict monitoring than approaching sedentary stimuli

(Cheval, Tipura, et al., 2018). These results are consistent with

the notion that such stimuli are attractive and, thus, difficult

to avoid. Finally, epidemiological research shows that declines

in cognitive functioning, which may be necessary to avoid

sedentary stimuli, precede declines in physical activity

(Cheval, Orsholits, et al., 2020).

An untested corollary from the theory of effort minimiza-

tion is that energy-minimizing behaviors elicit reward-related

brain activity that promotes the repetition of such behaviors

via reinforcement learning processes (Rescorla & Wagner,

1972; Sutton & Barto, 1998). One of the crucial processes un-

derlying reinforcement learning is the brain's computation of

positive and negative reward-prediction errors, which repre-

sent the degrees to which actual outcomes are better or worse

than expected, respectively. Positive reward-prediction errors

act as signals within the brain to increase the value of de-

cisions and actions that led to the errors, thus ‘stamping in’

such decisions and actions. Conversely, negative reward-

prediction errors act as signals within the brain to decrease

the value of decisions and actions that led to the errors, thus

‘stamping out’ such decisions and actions. Reward-prediction

errors in humans can be quantified using the reward positivity

component of the event-related potential (ERP) derived from

the EEG (Krigolson, 2018; Proudfit, 2015; Sambrook & Goslin,

2015). The reward positivity manifests as a positive deflec-

tion in the ERP 250e350 ms following rewarding feedback and

is maximal at midline frontocentral electrode sites. Based on

the theory of effort minimization and reinforcement learning

theory, experiencing a positive reward-prediction error from

taking the elevator or a negative reward-prediction error from

taking the stairs should reinforce behaviors that optimize

opportunities to take the former, such as choosing to enter a

building through a specific door known to have easy access to

an elevator.

In the present research, we tested hypotheses consistent

with the theory of effort minimization in physical activity

(Cheval & Boisgontier, 2021; Cheval, Radel, et al., 2018) and
reinforcement learning theory (Rescorla & Wagner, 1972;

Sutton & Barto, 1998). Specifically, participants performed a

doors task inspired by Hassall, Hajcak, and Krigolson (2019)

and crossed with a movement-incentive delay task (Cheval,

Boisgontier, Bacelar, Feiss, & Miller, 2019), both of which

have been used to study reinforcement learning brain activity

(i.e., reward positivity). On each trial, participants in a stand-

ing position chose one of two stimuli (“doors”) on the screen.

Following this choice, they were first informed whether they

had to sit down and squat, should they earn a reward on the

trial. Next, participants were informed whether they earned

the reward or not. If they earned the reward, they had to

retrieve it by implementing the behavior indicated in the first

step (i.e., sitting down or squatting and returning to the

standing position). Unbeknownst to participants, both doors

were equally likely to lead to a reward, but one door was

programmed to lead to an opportunity to sit 3.5 times more

often than the other door. As such, since choices were unre-

lated to the probability of receiving a reward, we could test

whether participants learned to make choices based on the

likelihood of sitting.

Our primary hypothesis was that opportunities to sit lead

to more positive reward-prediction errors, as expressed by a

larger reward positivity (H1). To test this hypothesis, we

examined whether the opportunity to sit versus stand (Trial

Type) and the presence of absence of reward (Reward) was

associated with reward positivity amplitude and whether

these variables interacted with each other (Trial Type x

Reward). This hypothesis followed directly from the theory

of effort minimization's prediction that opportunities to

minimize energy expenditure are rewarding. We also inves-

tigated whether the effect of opportunities to sit tested in H1

was moderated by factors related to energy expenditure.

Specifically, we hypothesized that the effect was larger in

participants who were typically less physically active (H2.1),

in participants who were physically active on the day of the

experiment prior to the experiment (H2.2), and after ener-

getically demanding behavior (i.e., squatting) during the

experiment (H2.3). These predictions followed from the

theory of effort minimization's contention that opportunities

to minimize energy expenditure are particularly rewarding

for individuals who are typically physically inactive, and that

the reward of effort minimization increases when an indi-

vidual spends energy. A third hypothesis was that the

probability of choosing the stimulus more likely to lead to

sitting than standing increased together with the increase in

trials (H3). This followed from the theory of effort minimi-

zation's claim that opportunities to minimize energy

expenditure are rewarding, and reinforcement learning

theory's claim that decisions that lead to rewards are

repeated. Finally, our fourth hypothesis was that reward

positivity predicted subsequent decisions about whether one

chooses the same or a different stimulus. Consistent with

reinforcement learning theory, we hypothesized that a large

positive reward-prediction error reinforced the decision that

led to it (i.e., the participant should choose the same

stimulus) (H4). This experiment was conducted as a regis-

tered report, and the approved protocol (stage 1 of the

registered report) can be found at https://osf.io/tcr7f (Miller

et al., 2021).

https://osf.io/tcr7f
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2. Methods

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study.

2.1. Population

Adults 19e40 years of age were recruited from the College of

Education Research Participant Pool at Auburn University

(USA) and by word-of-mouth to participate in the study in

exchange for course credit, if applicable. This demographic

was convenient to the investigators and had been used in

similar studies (e.g., Cheval et al., 2019). To be included in the

study, participants had to report an absence of physical

impairment and disabilities that would make repeatedly

standing and sitting difficult (yes vs no), an absence of skin

allergies or sensitivity to lotions or cosmetics, and an absence

of neurological impairment.

2.2. Sample size calculation

To estimate the sample size required for sufficient power

(90%) with an alpha level lowered to 2%, we focused on the

linearmixed-effectsmodel (MEM) used to test H1, our primary

hypothesis. In general, sample size calculation is difficult and

sensitive since it depends on the values of all (fixed and

random) parameters. However, in a fully balanced case, such

as the current design (40 trials per trial type/reward combi-

nation [condition]), repeated-measures ANOVA and linear

MEM will be nearly identical. For repeated-measures ANOVA,

we know the main effects and interaction tests will be inde-

pendent; the distribution under the alternative hypothesis is a

non-central F with non-centrality parameter:

l¼
n
P2
j¼1

P2
k¼1

b2
jk;interest

1
Rs

2
ε
þ 2s2

interest

where “interest” corresponds either to the main effect of trial

type and, thus, b1 and s2
1, to the main effect of reward and,

thus, b2 and s2
2, or to the Trial Type � Reward interaction and,

thus, b3 and s2
3. R is the number of repetitions per participant

and per condition. Based on H1, our primary hypothesis, our

effect of interest is the Trial Type � Reward interaction. Our

pilot data results showed a Cohen's f ¼ .516 (see 3.2 Pilot Re-

sults). However, we decided to use amore conservative f¼ .25,

representing amedium effect size (Cohen, 1962), because pilot

study results are unlikely to yield accurate estimates of effect

sizes (Albers & Lakens, 2018). An f ¼ .25, where ¼ ffiffiffiffiffiffiffiffi
l=n

p
, im-

plies that b should be equal to .25 times the squared root of the

denominator in the definition of l. To take realistic values, we

based our values on the pilot study and used R ¼ 34, s2
ε
¼ 108,

and s2
interest ¼ 2:5. This implies a value for bs of .715. To ensure

this approach was also valid for linear MEM for our design, we

ran simulation studies that showed, as in repeated-measures

ANOVA, that the main effects and the interaction tests would

be independent and, for example, the power for b1 depends
only on s2
1 (the variance of u1j) and s2

ε
. The values of s2

2 and s2
3

have almost no influence on this power. The power is guided

by l, as defined above. To evaluate the power for different

sample sizes, we ran a MEM Monte Carlo simulation based on

the model planned to address H1 with 500 samples of each

size and with the above values. It was accomplished with the

lmer R functions and simulated from the lme4 package. With

these settings, for all effects, with a ¼ .02, the number of

participants needed to detect a medium effect size was �56.

Based on the pilot study where 1 of 9 participants had a poor

EEG recording, we expected poor EEG recordings from 11.11%

of participants. Therefore, we recruited 64 participants but

ensured that we had quality data in a sufficient number of

trials (n � 20 condition; Marco-Pallares, Cucurell, Münte,

Strien, & Rodriguez-Fornells, 2011) from at least 56

participants.

For the first secondary analysis (H2), the same reasoning

and computations as the ones used for H1 was made for all

effects and, with a¼ .02, the number of participants needed to

detect a medium effect size was also �56. Power calculation

for secondary analyses addressing H3 and H4 was attempted

but not completed because the calculations failed to yield

reliable results, possibly due to the increased complexity of

the models.

2.3. Experimental setup

Each trial of the task began with the participant standing and

facing a table upon which was a computer monitor, approxi-

mately eye level to the participant (Fig. 1). There was a blue

container holding plastic coins next to the monitor and

approximately arm-level with the participant when standing.

A foldup butterfly chair was positioned immediately behind

the participant. Another blue container holding plastic coins

and an empty red (collection) container were positioned next

to the chair and approximately arm-level with the participant

when seated. A recording device (e.g., iPAD) was positioned on

the ground facing the participant's legs. Participants were told

their lower body movements were recorded to confirm that

they were standing as still as possible, which they were

instructed to do to facilitate EEG recording. The participant

held a wireless game controller throughout the experiment.

2.4. Experimental protocol

Data were collected at a single testing site. Participants’ height

andweightweremeasuredwith a stadiometer and scale. They

were asked to rate how fatigued they felt using the Multidi-

mensional Fatigue Inventory (Smets, Garssen, Bonke, & De

Haes, 1995) and three custom items (see Appendix B) prior to

starting the task. Participants began each trial standing and

were prompted to hit a game controller button to start the trial

(Fig. 2). Next the participant saw two squares (or “doors”)

appear on the computermonitor, one to the left and one to the

right. One of the squareswas burnt orange (RGB: 205, 85, 0) and

one was navy blue (RGB: 0, 0, 128). The color of the square

appearing on the left or right varied randomly with equal

probability. Participants were instructed to select one of the

squares by pressing the game controller button corresponding

https://doi.org/10.1016/j.cortex.2023.06.011
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Fig. 1 e Experimental Setup. The participants used a game

controller to respond to stimuli on a computer monitor.

They had the opportunity to win plastic coins from the

blue container at arm-level while standing or the blue

container at arm-level while seated, based on probabilistic

learning and chance. The participant deposited the coins

won in the red container.

Fig. 2 e Experimental protocol and stimuli. There were four typ

standing. For each participant, one of the colored squares had a

had a 20% chance of resulting in a sit trial. Each square and ea

which determined whether the behavior had to be performed o

c o r t e x 1 6 7 ( 2 0 2 3 ) 1 9 7e2 1 7 201
with the side of the monitor containing their square of choice

(i.e., the left button if the square they choose is on the left side,

and the right button if the square they choose is on the right

side). After a choice was made, a fixation cross appeared for

300e500 ms followed by a stimulus depicting two lines, an

upper line and a lower line, with a container depicted upon

one of the lines. If the container was upon the upper line

(stand trial), it indicated that, if the participant earned a

reward on the trial, it would result in them retrieving coins

from the upper blue container that was arm-level when

standing. If the container was upon the lower line (sit trial), it

indicated that, if the participant earned a reward on the trial, it

would result in them retrieving coins from the lower blue

container that was arm-level when sitting. The lines and

container stimuli remained on the monitor for 2000 ms and

were followed by a fixation cross for 300e500 ms. Next, par-

ticipants saw a feedback stimulus informing them whether

they earned the reward or not. They either saw a “$” sign for

1000 ms indicating that they earned a reward, or a “0” for

1000 ms if they did not. Then, participants saw the word

“WAIT” appear on the monitor for 3000 ms. Then, on stand

reward trials, participants heard a tone indicating that they

should take a coin from the upper container, squat to touch

their butt to the chair while placing the coin in the red

collection container, then return to a standing position. This

process was repeated after a 6000 ms interval before the next

tone, until a total of 5 coins had been retrieved. On sit reward

trials, participants sat down in the chair upon hearing the

tone and took a coin from the lower container, then placed the

coin in the red collection container. The participant remained

seated until the next tone, at which time they retrieved

another coin from the lower container by simply reaching into

the container. This process was repeated until the participant

retrieved five coins in total. Participants were told to remain
es of trials, each of which began with the participant

70% chance of resulting in a sit trial and the other square

ch type of trial had a 50% chance of resulting in a reward,

r not.

https://doi.org/10.1016/j.cortex.2023.06.011
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Table 1 e Sample description. Note. BMI ¼ body mass index: 95% CI ¼ 95% confidence intervals. Reliability estimates were
computed using the ERP Reliability Analysis (ERA) Toolbox (v0.5.2; 1000 iterations), which uses generalizability theory
(Clayson & Miller, 2017a).

n Mean SD

Age (years) 58 20.5 1.1

BMI (kg/m2) 58 25.6 3.9

Typical MVPA (MET minutes per week) 54 4396.6 2831.9

Today MVPA (MET minutes) 57 314.3 420.2

Study-related energy expenditure (METs) 58 122.3 3.2

Perceived Exertion for the sit trial (range 6e20) 58 7.4 1.3

Perceived Exertion for the stand trial (range 6e20) 58 12.5 1.8

Reward Positivity (mV)

Average 56 6.8 4.6

Reward trials 56 9.2 5.5

No-reward trials 56 4.6 4.6

Probability to choose the sit versus stand stimulus (%) 58 58 15

Change of chosen stimulus (vs previous trial) (%) 58 38 14

Typical sitting time on a weekday (min/day) 54 389.2 209.3

Fatigue

Multidimensional Fatigue Inventory (range 1e5) 58 3.9 0.5

Pre-task custom score (range 0e10) 58 1.8 1.6

Post-task custom score (range 0e10) 58 4.7 2.0

Exercise dependence (range 1e6) 58 2.7 0.8

Affective attitudes toward exercise (range 1e9) 58 7.0 1.5

Instrumental attitudes toward exercise (range 1e9) 58 8.5 0.7

Awareness that a stimulus led more to sit than stand trials (range 0e10) 58 6.3 3.4

Number of trials per participant and EEG reliability Median Minimum Reliability [95% CI]

Sit reward trials 56 37 23 .86 [.81, .91]

Sit no-reward trials 56 40.5 21 .78 [.68, .86]

Stand reward trials 56 40 24 .84 [.78, .90]

Stand no-reward trials 56 37 21 .85 [.78, .90]

c o r t e x 1 6 7 ( 2 0 2 3 ) 1 9 7e2 1 7202
seated after retrieving the fifth coin until prompted to start the

next trial.

On no-reward trials (“0” sign), participants remained

standing for 30 sec, irrespective of the information provided to

them in the first step (i.e., sit vs stand trial). Thus, participants

should have set expectations about whether they would sit or

squat to retrieve coins in the first step, then computed a

reward-prediction error based on the feedback stimulus (”$” vs

“0”) in the second step, which informed them whether they

indeed sat or squatted to retrieve coins.

Prior to starting the task, participants were told that each

coin represents a raffle ticket to win $10 [USD]; the more coins

they earned, the more likely they were to win $10; on each

trial, a certain color square gave them a certain probability of

winning, so they should focus on choosing a square based on

color; and there was no strategy for selecting a color square to

win. Please see Appendix A for complete instructions that

were given to the participants. Unbeknownst to participants,

each color square had a 50% probability of resulting in a

reward on each trial, but one square had a 70% chance of

resulting in a sit trial, whereas the other square had a 20%

chance of resulting in a sit trial. This procedure allowed to test

whether participants began to choose the square more likely

to minimize effort (H3) while avoiding having them choose a

square based on its likelihood of resulting in a reward (coins).

Through preliminary pilot testing, we established that these

probabilities should lead to at least n¼ 25 of each trial type (sit

reward, sit no-reward, stand reward, stand no-reward), which

past research has revealed leads to a reliable reward positivity
(Marco-Pallares et al., 2011). The median and minimum

number of trials per condition and dependability (reliability)

are reported for both the pilot and main study (Table 1). Reli-

ability was obtained using generalizability theory (Carbine,

Clayson, Baldwin, LeCheminant, & Larson, 2021; Clayson &

Miller, 2017b), and using the ERP reliability analysis toolbox

implemented in Matlab software (Clayson & Miller, 2017a;

2017b). We used reliability to contextualize results from our

primary experiment (reliability is associated with standard

error of measurement and effect size; (Clayson and Miller,

2017b) and inform future research (e.g., how many trials per

condition researchers should try to obtain).

The color square with the higher probability of resulting in

a sit trial varied randomly between participants. Participants

completed a total of 160 trials, which took about 110 min.

Participants were given breaks approximately every 22 min

and remained standing during the breaks.

After finishing the task, participants completed question-

naires. The Borg scale (Borg, 1982) was used to rate the

perceived level of exertion they typically experienced when

retrieving coins and waiting for the next trial from the sitting

versus standing position. Participants were asked whether

they preferred to retrieve coins by sitting or standing. The

custom fatigue questions were asked again (Appendix B). The

International Physical Activity Questionnaire (IPAQ) (Craig

et al., 2003) was used to assess the level of energy expendi-

ture during a typical week and on the current day. Depen-

dence on exercise was assessedwith the Exercise Dependence

Scale-21 (Hausenblas & Symons Downs, 2002) and their

https://doi.org/10.1016/j.cortex.2023.06.011
https://doi.org/10.1016/j.cortex.2023.06.011


c o r t e x 1 6 7 ( 2 0 2 3 ) 1 9 7e2 1 7 203
affective attitudes toward exercise were also assessed

(Courneya & Bobick, 2000). Participants provided information

related to handedness (Oldfield, 1971). Finally, participants

were informed that one of the squares was more likely to

result in stand trials and asked to rate their awareness of this

manipulation of likelihood on a 0 (“not aware at all”) to 10

(“fully aware”) scale.

2.5. EEG recording and signal processing

Scalp EEG was collected from a BrainVision actiCAP system

(Brain Products GmbH, Munich, Germany) labeled in accord

with an extended international 10e20 system (Oostenveld &

Praamstra, 2001) and sampled at 250 Hz. Data were collected

from the following electrodes: FP1, FP2, F3, Fz, F4, FC3, FCz,

FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and P4. EEG data were

referenced online to the left earlobe and a common ground

was employed at the FPz electrode site. Electrode impedances

were maintained below 25 kU throughout the study and a

high-pass filter was set at .016 Hz. The EEG signal was trans-

mitted via the BrainVision wireless MOVE add-on (Brain

Products GmbH) to a BrainAmp DC amplifier (Brain Products

GmbH) that amplified and digitized the signal. The amplifier

was linked to a computer running BrainVision Recorder soft-

ware (Brain Products GmbH) that recorded the signal. EEG data

processing was conducted with BrainVision Analyzer 2.2

software. Data was visually inspected to determine whether

any electrode needed to be interpolated, for example due to

recording failure (e.g., 1-sec or longer periods of voltage

changing by less than .5 mV) and/or electrical noise (e.g., sharp

changes in voltage of more than 200 mV). Next, data were re-

referenced to an average ears montage. Then, data were pre-

pared for independent component analysis (ICA) cleaning.

First, a 1e40 Hz band-pass filter with 4th order roll-offs and a

60 Hz notch filter was applied. Next, data were visually

inspected and non-stereotypical artifacts were marked. Then,

an ICA was conducted to identify stereotypical artifacts, such

as blinks and saccades. We identified stereotypical artifacts,

such as blinks and saccades, by looking for components that

exhibited relatively sharp changes in frontopolar voltage (e.g.,

more than 200 mV) that decreased in amplitude from anterior

to posterior electrode sites (blinks), or exhibited broad fron-

topolar changes in voltage (e.g., more than 200 mV) that were

larger in a hemisphere than in the other hemisphere and

decreased in amplitude from anterior to posterior electrode

sites (saccades). This ICA was applied to the unfiltered data to

remove identified artifacts. This cleaned data was band-

passed filtered between .1 and 30 Hz with 4th order roll-offs,

and a 60 Hz notch filter was applied.

2.6. Measures

2.6.1. Reward-prediction errors: “reward positivity”
The reward positivity was extracted from an epoch beginning

200 ms prior to the onset of the feedback stimulus, indicating

whether the participant earned the reward or not, and ending

800 ms after this stimulus. Then, the epoch was baseline

corrected with respect to the pre-stimulus interval (�200 e

0 ms). Next, epochs containing a change of more than 50 mV

from one data point to the next, a change of 100 mV within a
moving 200-mswindow, or a change of less than .5 mVwithin a

moving 200-ms window in any of the midline electrodes (Fz,

FCz, Cz, CPz, and Pz) were excluded from subsequent analysis.

Next, we determined the time window for reward positivity

quantification. Specifically, epochs time-locked to reward

feedback were averaged separately for reward and no-reward

trials. Then, the average of the no-reward feedback epochs

was subtracted from the average of the reward feedback

epochs to create a difference wave for each participant. In our

pilot data, difference waves exhibited substantial interindi-

vidual variability in reward positivity peak latency (the posi-

tive peak 230e350 ms after feedback onset). Thus, we

adaptively centered each participant's reward positivity time

window (length ¼ 40 ms) on their reward positivity peak la-

tency at the electrode at which it peaked (Fz, FCz, or Cz)

(Clayson, Baldwin, & Larson, 2013). We also confirmed that

this window included a negative deflection in the no-reward

feedback waveforms (Krigolson, 2018). If it did not, we

centered the window on the maximal negativity between 230

and 350ms in the no-reward feedback waveforms. Of note, we

originally planned to identify each participant's reward posi-

tivity between 250 and 350ms, but, after collecting data from 9

participants, we noticed that the reward positivity was peak-

ing as early as 230 ms. Thus, we consulted the editorial team

and were advised to adjust our reward positivity window to

230e350ms and conduct sensitivity analyses with the original

time window. Then, we computed mean amplitude in each

participant's timewindow at Fz, FCz, and Cz for each epoch (i.e.,

the non-averaged data) and then averaged across these elec-

trodes. That is, the mean amplitude, pooled across Fz, FCz,

and Cz, in each participant's reward positivity time window

for each trial served as the reward positivity. If one of the

electrodes malfunctioned during recording, it was not

included in the average. Finally, since the reward positivity

exhibited an unexpected posterior scalp distribution (i.e.,

maximal voltage at electrode CPz or Pz), we quantified the

component by averaging across electrodes Cz, CPz, and Pz,

and submitted this reward positivity to a sensitivity analysis.

2.6.2. Energy expenditure
The typical level of energy expenditure was assessed using

the IPAQ (Craig et al., 2003) assessing moderate-to-vigorous

physical activity undertaken during a typical week (“typical

MVPA”). Typical MVPA was computed using the Metabolic

Equivalent of Task (MET) associated with moderate (6 METs)

and vigorous physical activity (8 METs) (IPAQ Research

Committee, 2005). Specifically, based on the IPAQ protocol,

the formula we used was: typical MVPA in MET minutes per

week ¼ 4.0 x minutes of moderate physical activity per week

þ8.0 x minutes of vigorous physical activity per week (IPAQ

Research Committee, 2005). The level of energy expenditure

prior to the experiment on the day of the experiment (“today

MVPA”) was also assessed using the IPAQ assessing

moderate-vigorous physical activity in MET-minutes.

Finally, the level of energy expenditure during the experi-

ment (“study energy expenditure”) was computed by sum-

ming the METs spent on each trial up to the current trial. To

compute the energy expended on each trial, we considered

the actions performed during the trial and the time spent

performing these actions. Specifically, participants spent
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28 sec standing on sit/stand no-reward trials; 26 sec sitting

down and 2 sec squatting (sitting down to retrieve coins and

standing up to begin the next trial) on sit reward trials; and

12 sec squatting and 16 sec standing on stand reward trials.

1.50 MET was assigned for sitting; 1.75 MET was assigned for

standing; and 4 METs was assigned for squatting, which we

consider moderate-intensity exercise (Mansoubi et al., 2015).

After converting METs from min to s, the trial types were

determined to have the following energy expenditure: sit

reward trial ¼ 1.30 MET; sit/stand no-reward trial ¼ 1.36 MET;

and stand reward trial ¼ 2.11 METs.

2.6.3. Behavioral measures
The first behavioral measure was the stimulus participants

chose on each trial (“stimulus chosen”), which was either the

stimulus with the higher or lower probability of resulting in a

sit trial. The second behavioral measure was whether a

participant changed their response (what stimulus they

chose) from the previous trial (“changed response”).

2.7. Statistics

Factors, designs, and formal tests used to investigate the

hypotheses are summarized in Supplemental Table 1. If a

variable was not normally distributed, as tested by the

ShapiroeWilk normality test, the variable was normalized

using the BoxeCox transformation (Box & Cox, 1964), which

represents a family of power transformations that in-

corporates and extends the traditional methods (e.g.,

square root, log, inverse) to find the optimal normalizing

transformation for each variable. As such, BoxeCox repre-

sents a potential best practice to normalize data (Osborne,

2010).

MEMs were used to test the hypotheses. The mixed-effect

approach provides a type I error rate that corresponds to its

expected level (Boisgontier& Cheval, 2016; Lachaud& Renaud,

2011) and is useful whenmodeling effects predicted to change

over time (e.g., H3; Lohse, Shen, & Kozlowski, 2020). In several

research fields, the use of MEM is promoted as a better alter-

native than traditional statistical models (Boisgontier &

Cheval, 2016). Unlike traditional approaches (e.g., ANOVA),

which require averaging trials within each condition, MEM

preserve all the information (i.e., for each participant, these

models keep the variability of the responses within each

condition). Therefore, the number of data points in the model

increases, which contains type I error rate without compro-

mising the power (Judd, Westfall, & Kenny, 2012). The MEMs

were built and fit by maximum likelihood in R using the lme4

and lmerTest packages and P-values were approximated

using the Satterthwaite's method (Bates, M€achler, Bolker, &

Walker, 2015; Kuznetsova, Brockhoff, & Christensen, 2016; R

Core Team, 2019). An estimate of the effect size of the fixed

effects was reported using the marginal pseudo R2 computed

with the MuMIn package (Barton, 2018). Statistical assump-

tions associated with MEMs (normality of the residuals, ho-

mogeneity of variance, linearity, multicollinearity exclusion,

and control of undue influence) were checked for all models. If

some observations exerted undue influence on the model

estimation (i.e., outliers), the models were tested with and

without them to ensure results' robustness. Alpha was set to
.02 for all analyses. To interpret significant interactions,

simple-effect analyses were conducted.

2.7.1. Primary analysis
H1 was tested with the following linear MEM:

RewardPositivityij¼
�
b0þu0j

�þ�
b1þu1j

�
Trial Type ðstandvssitÞij

þ�
b2þu2j

�
Reward ðno rewardvs rewardÞij

þb3TrialTypeij�Rewardijþ εij

(1)

where RewardPositivityij is the participant's reward positivity

in condition i, b0 to b3 are the fixed effect coefficients, u0j to u2j

are the random effects for participant j (random intercepts

and slopes), εij is theerror term;u1j, u2j and εij are Gaussian and

independent.

To test H1, we checked and ensured that reward positivity

was larger on reward versus no reward trials as this condition

must be satisfied to demonstrate the presence of a reward

positivity that could potentially be moderated by other fac-

tors, such as trial type.

2.7.2. Sensitivity analyses
As mentioned in section 2.6.1, a sensitivity analysis was

conducted with the window centered on the maximal nega-

tivity between 250 and 350 ms in the no-reward feedback

waveforms. In addition, a sensitivity analysis was conducted

with reward positivity averaged across electrodes Cz, CPz, and

Pz (and centered on a peak between 230 and 350 ms).

2.7.3. Secondary analyses
H2.1, H2.2, and H2.3 were tested with the following linear

MEM:

RewardPositivityij¼
�
b0þu0j

�þ�
b1þu1j

�
Trial Type ðstandvssitÞij

þ�
b2þu2j

�
Reward ðno rewardvs rewardÞij

þ�
b3þu3j

�
EnergyExpenditureij

þb4TrialTypeij�Rewardij

þb5TrialTypeij�EnergyExpenditureij
þb6Rewardij�EnergyExpenditureij
þb7TrialTypeij�Rewardij

�EnergyExpenditureijþεij

(2.1e2.3)

where RewardPositivityij is the participant's reward positivity

in condition i, b0 to b7 are the fixed effect coefficients, u0j to u3j

are the random effects for participant j (random intercepts

and slopes), εij is theerror term;u1j, u2j; u3j, and εij are Gaussian

and independent, Energy Expenditure is the score on typical

MVPA, today MVPA, and study energy expenditure for model

2.1, 2.2, and 2.3, respectively.

H3 was tested with the following logistic MEM:

logit
�
Ej

�
Stimulus Chosenij

��
¼ b0 þ

�
b1 þu1j

�
Trial Numberij þ u0j

(3)

where Stimulus Chosen is the stimulus chosen by the jth

participant on trial i, Ej is the conditional expectation, b0 and

b1 are the fixed effect coefficients, u0j and u1j are the random

intercepts and slopes for the jth participant and are Gaussian

and independent.
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H4 was tested with the following logistic MEM:

logit
�
Ej

�
Changed Responseij

��
¼b0 þ

�
b1 þu1j

�
Reward Positivityi�1j

þ u0j

(4)

where Changed Response is whether the jth participant

changed their response from trial i �1 to trial i, b0 and b1 are

the fixed effect coefficients, u0j and u1j are the random in-

tercepts for the jth participant and are Gaussian and

independent.

Several variables were added to determine if they

explained residual variance. For models 1 and 2, the outcome

variable, reward positivity, is sensitive to whether a reward is

predicted on a trial. Although each trial (1, 2, 3, etc.), each

stimulus chosen (burnt-orange square vs navy-blue square),

and each type of trial (sit vs stand) was programmed to have a

50% chance of resulting in a reward, it was possible that re-

wards occurred more or less frequently at times. Thus, we

added variables reflecting the probability of receiving a reward

on the current trial given how frequently (1) a reward had been

received up to the current trial (“reward probability”); (2) a

reward had been received when choosing a certain stimulus

up to the current trial (“stimulus reward probability”); and (3)

a reward had been received on a certain trial type up to the

current trial (“trial type reward probability”). We also added

interaction terms between these variables and those in the

primary models.

For model 3, the choice of the stimulus should also be

sensitive to reward probability based on the stimuli chosen up

to the current trial. Therefore, we added stimulus reward

probability in this model. Stimulus chosen should also be

sensitive to trial type given the stimulus chosen. Although one

stimulus was programmed to lead to sit trials 70% of the time

and the other stimulus only 20%, the actual difference may

have departed from 50% at times. Thus, we added a variable

reflecting the probability that one stimulus led to a sit trial

relative to the probability that the other stimulus led to a sit

trial, up to the current trial (“stimulus trial type probability”).

We also added interaction terms between these variables and

those in the primary models.

For model 4, trial number may have predicted changed

response, with participants changing their responses less

often across trials as they learned the stimuli-trial type rela-

tionship (e.g., Lohse, Miller, Daou, Valerius, & Jones, 2020).

Additionally, trial type (sit vs stand) on the prior trial (“previ-

ous trial type”) and reward (reward vs no-reward) on the prior

trial (“previous reward”) may have predicted changed

response. We also added interaction terms between these

variables and those in the primary models.

2.7.4. Non-registered analyses
Non-registered analyses using data from questionnaire re-

sponses were conducted to determine whether independent

variables that have been shown, or could reasonably be ex-

pected, to be related to physical activity or sedentary behavior

could contribute to explaining the variability in the following

dependent variables: (i) reward positivity, (ii) the probability of

choosing the stimulus with a higher probability of sitting, and

(iii) the probability of changing the chosen stimulus compared
to the previous trial. The independent variables examined in

these exploratory analyses were age (Cheval, Sieber, et al.,

2018), gender (Chalabaev et al., 2022), body mass index (BMI;

computed fromheight andweight) (Cheval, Sieber, et al., 2018;

Klimentidis et al., 2018), typical sitting time (Craig et al., 2003),

exercise dependence (Hausenblas & Symons Downs, 2002),

affective attitudes toward exercise (Farajzadeh et al., 2023;

Rhodes& Kates, 2015), instrumental attitudes toward exercise

(Rollo, Gaston,& Prapavessis, 2016), fatigue (Multidimensional

Fatigue Inventory [Smets et al., 1995] as well as pre- and post-

task custom questions), IPAQ scores ranked by quartiles

(Sagelv et al., 2020), rating of perceived exertion associated

with retrieving coins on sit reward trials and stand reward

trials, preference for the sit versus stand trials, and awareness

about the fact that one stimulus led to a higher probability of

stand (vs sit) trials relative to the other stimulus.

When estimating the effect on reward positivity (i), we

tested the interaction between reward, type of stimulus, and

each independent variable in models that accounted for the

random effect of trial type and reward (reward vs no reward)

at the participant level. When estimating the effect on the

probability of choosing the stimulus with the higher proba-

bility of sitting (ii), we tested the interaction between trial

number and each independent variable in models that

accounted for the random effect of trial at the participant

level. When estimating the effect on the probability of

changing chosen stimulus (iii), we tested the interaction be-

tween reward positivity and each independent variable in

models that accounted for the random effect of reward posi-

tivity at the participant level.
3. Pilot study

After conducting several pilot studies aiming to refine the

paradigm (e.g., number of trials, probabilities that each stim-

ulus leads to a sit trial), we conducted our main pilot study

with two objectives. First, we sought to determinewhether we

could observe a reward positivity in our data that could

potentially be moderated by trial type. Such effect would be

observed if there was a frontocentral positive deflection in the

ERP time-locked to feedback onset for reward trials in com-

parison to no-reward trials. Second, we sought to determine

whether the rating of perceived exertion (Borg, 1982) was

lower for trials in which participants sat to retrieve rewards

versus squatted to retrieve rewards. No persistent movement

artifact was observed in the segments of pilot EEG data from

which the reward positivity was extracted (i.e., the data time-

locked to feedback presentation). This was expected because

participants were motionless when feedback was presented.

Additionally, despite participants squatting, no sweat artifact

was observed in the pilot EEG data, which was expected

because the testing room temperature was kept at 20 �C. The
pilot data informed the sample size calculation, which was

conducted with a simulation informed by the data (see 2.2

Sample Size Calculation). Regarding the number of trials for

each condition, the medians were as follows: sit reward: 36.5

(minimum ¼ 24), sit no-reward: 32.5 (minimum ¼ 26), stand

reward: 39 (minimum ¼ 30), and stand no-reward: 39

(minimum ¼ 29).
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3.1. Pilot population

We recruited nine participants from the College of Education

Research Participant Pool at Auburn University (USA) (5males;

age ¼ 21.2 ± 1.2 years, BMI ¼ 24.7 ± 4.8 kg/m2, mean ± SD). We

determined seven participants were required to detect a main

effect of reward, based on an effect size observed in our past

research (Meadows, Gable, Lohse, & Miller, 2016), but chose to

recruit at least eight participants in case of data loss due to

poor EEG recording, which did occur for one participant.

3.2. Pilot results

ERP waveforms and scalp topographies for the pilot data are

depicted in Supplemental Figure 1. The figure suggested that

we were able to obtain clean data, which was further evi-

denced by the fact that we lost only 11.4% (SD¼ 10.8%) of trials

per participant due to artifacts in the EEG. As expected, a 2

(Trial Type: Sit vs Stand) x 2 (Reward: Reward vs No-Reward)

repeated-measures ANOVA revealed a main effect of reward,

F(1, 7) ¼ 16.2, P ¼ .005, f ¼ 1.52, such that reward positivity was

larger for reward trials (M ¼ 11.8 mV, SD ¼ 8.48 mV) than no-

reward trials (M ¼ 5.51 mV, SD ¼ 5.86 mV). The Trial

Type � Reward interaction was F(1, 7) ¼ 1.86, P ¼ .215, f ¼ .516,

and the main effect of trial type was F(1, 7) ¼ .851, P ¼ .387,

f ¼ .348. Regarding the second objective of the pilot data, as

expected, a paired-sample t-test revealed that rating of

perceived exertion was lower when retrieving rewards on sit

trials (M ¼ 7.33, SD ¼ 1.41) than stand trials (M ¼ 11.1,

SD¼ 2.20), t(8) ¼ 4.09, P ¼ .004, d¼ 1.36. The primary statistical

models were also tested with the pilot study data and results

shown in Supplemental Table 2, 3, and 4.
4. Results

All the models can be tested using the data and R code avail-

able in a public repository (Parma et al., 2023). In lieu of a

laboratory log, readers can note the date of each data collec-

tion by viewing the log files in this repository.

MEM do not require Gaussianity of the dependent and in-

dependent variables, but of the residuals and of the random

effects, which can be checked only after a model has been

fitted. Accordingly, results in the main text reflect the initial

results, except in the few cases where results changed with

transformed variables. In these cases, the main text shows

results based on transformed variables. For transparency,

complete results based on non-transformed variables can be

found in Table 2 and those based on transformed variables

can be found in Supplementary Table 5.

Since outliers have an influence on the choice of the best

transformation made by the traditional BoxeCox likelihood-

based transformation, this method may not always provide

the correct transformation. Therefore, when the BoxeCox

transformation did not visually improve the distribution of

the variable, other transformations were tested.

All independent variables treated as continuous (i.e., trial,

typical MVPA, today MVPA, study energy expenditure, reward

probability, stimulus reward probability, trial type reward

probability, typical sitting time, exercise dependence,
affective attitudes, instrumental attitudes, fatigue, rating of

perceived exertion, awareness) were standardized to facilitate

interpretation and to simplify the random structure. Stan-

dardization was conducted using the scale() function in the R

base package (R Core Team, 2021). Thus, all the continuous

independent variables included in the models have a mean of

zero and a standard deviation of one.

Since the dependent variables were not standardized, the

b-values reported in the results can be interpreted as follows:

If the b-value is positive, then for each one-standard-

deviation increase in the independent variable, the depen-

dent variable increases by the value of the b coefficient. This

strategy was chosen to facilitate comparison of the effects of

the independent variables, to reduce potential multi-

collinearity problems, and to improve model convergence.

4.1. Descriptive statistics

Table 1 shows the characteristics of the participants. Sixty-

four participants began the study, but the final sample

included 58 participants (30 women; mean age 20.5 ± 1.1

years; mean body mass index 25.6 ± 3.9 kg/m2), two of whom

had their EEG data discarded due to excessive artifact. Six

participants did not complete the study due to experiment

equipment failure or not meeting the minimum age crite-

rion. The typical level of moderate-to-vigorous physical ac-

tivity was 4396.6 ± 2831.9 MET minutes per week, which is

above the threshold for a high level of physical activity (3000

MET-mins per week) (IPAQ Research Committee, 2005). This

result is likely due to our sample consisting of young adults

who were enrolled in Auburn University College of Educa-

tion courses, many of which are about exercise science and

physical activity. It should also be noted that the IPAQ is

prone to overestimating actual levels of physical activity

(e.g., Dinger, Behrens, & Han, 2006; Lee, Macfarlane, Lam, &

Stewart, 2011). The level of moderate to vigorous physical

activity during the day of the study was 314.4 ± 420.2 MET

minutes, and the energy expenditure during the study was

122.3 ± 3.2 METs. The mean rating of perceived exertion was

7.4 (±1.3) for sit trials and 12.5 (±1.8) for stand trials. The

mean reward positivity amplitude was 6.8 mV (±4.6), the

mean reward positivity amplitude in the no reward condi-

tion was 4.6 mV (±4.6), and the mean reward positivity

amplitude in the reward condition was 9.1 mV (±15.1). On

average, participants chose the stimulus with the higher

probability to sit rather than to stand 58% (±15%) of the tri-

als. Finally, participants changed the stimulus chosen in 38%

(±14%) of the trials. The median number of trials per condi-

tion were as follows: sit reward ¼ 37 (minimum ¼ 23), sit no-

reward ¼ 40.5 (minimum ¼ 21), stand reward ¼ 40 (minimu

m ¼ 24), and stand no-reward ¼ 37 (minimum ¼ 21). Other

variables that were used for exploratory analyses are

described in Table 1.

4.2. Reward positivity

Table 2 and Fig. 3 show the results for reward positivity as a

function of the reward and the type of trial. Results showed

that reward positivity was larger on reward versus no reward

trials (b ¼ 2.29; 95% confidence interval [95CI] ¼ [1.74; 2.84];
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Table 2 e Results of the mixed-effects models predicting reward positivity. Notes. CI ¼ confidence interval at 95%;
MVPA ¼ moderate-to-vigorous physical activity.

Reward positivity Without MVPA (n ¼ 56) With typical MVPA
(n ¼ 52)

With today MVPA
(n ¼ 55)

With study energy
expenditure (n ¼ 56)

b (CI) p b (CI) p b (CI) p b (CI) p

Fixed Effects

Intercept 6.94 (5.71; 8.16) 5.0 � 10�16 7.09 (5.78; 8.39) 5.7 � 10�15 7.02 (5.79; 8.25) 4.1 � 10�16 6.95 (5.72; 8.18) 4.9 � 10�16

Reward (ref. no reward)

Reward 2.29 (1.74; 2.84) 2.0 � 10�11 2.35 (1.78; 2.93) 5.7 � 10�11 .19 (1.73; 2.85) 4.1 � 10�11 2.28 (1.74; 2.83) 1.9 � 10�11

Type of trial (ref. sit)

Stand �.19 (�.24; 0.63) .388 .20 (�.25; 0.66) .384 1.91 (�.25; 0.64) .398 .22 (�.21; 0.67) .307

Reward x Type of trial .10 (�.18; 0.40) .482 .11 (�.19; 0.43) .449 .08 (�.21; 0.38) .573 .09 (�.20; 0.39) .531

Typical level of physical activity

Typical MVPA .33 (�.95; 1.62) .607

Typical MVPA x Reward .41 (�.15; 0.98) .151

Typical MVPA x Type of

trials

�.36 (�.81; 0.09) .119

Typical MVPA x Reward x

Type of trial

.14 (�.15; 0.45) .338

Today level of physical activity

Today MVPA .56 (�.65; 1.77) .361

Today MVPA x Reward .21 (�.34; 0.76) .448

Today MVPA x Type of

trials

�.12 (�.56; 0.32) .591

Today MVPA x Reward x

Type of trial

.38 (.08; 0.68) .012

Study energy expenditure

Study energy expenditure .80 (.51; 1.10) 7.1 � 10�8

Study energy expenditure

x Reward

�.11 (�.40; 0.17) .445

Study energy expenditure

x Type of trial

.03 (�.25; 0.33) .797

Study energy expenditure

x Reward x Type of trial

�.07 (�.37; 0.21) .604

Random Effects

Participants

Intercept 15.559 16.481 15.066 15.599

Reward for subject 5.955 6.019 6.076 5.902

Type of trial for subject 2.924 2.899 3.003 2.974

Residual 191.342 195.568 193.195 190.664
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P ¼ 2.0 � 10�11). This result demonstrated the presence of a

reward positivity that could potentially bemoderated by other

factors, such as trial type. Contrary to H1, results showed no

evidence of a two-way interaction between reward (reward vs

no reward) and the type of trial (sit vs stand), suggesting that

the effect of reward on reward positivity did not significantly

vary with the type of trial (b ¼ .10; 95CI ¼ [�.18; .40]; P ¼ .482).

Contrary to H2.1, H2.2, and H2.3, results showed no evidence

suggesting that typical MVPA (b ¼ .14; 95CI ¼ [�.15; .45];

P ¼ .338) or the energy expended across the task (b ¼ �.07;

95CI ¼ [�.37; .21]; P ¼ .604) moderated the interaction effect of

reward x type of trial on reward positivity. However, in line

with H2.2, today MVPA moderated this interaction effect of

reward x type of trial on reward positivity (b ¼ .38; 95CI ¼ [.08;

.683], P ¼ .012). Simple analyses further showed that when

today MVPA was high (þ1SD), the two-way interaction be-

tween reward (reward vs no reward) and the type of trial (sit vs

stand) was in a different direction (b ¼ .47; 95CI ¼ [.047; .839],

P ¼ .029) than when today MVPA was low (�1 SD) (b ¼ �.29;

95CI ¼ [�.723; .127], P ¼ .170). Specifically, when today MVPA

was high, the effect of reward in the seated trial was lower
than in the stand trial (b ¼ 2.03; 95CI ¼ [1.135; 2.932],

P ¼ 1.97 � 10�5 vs b ¼ 2.97; 95CI ¼ [2.098; 3.854], P ¼ 1.6 � 10�9

for sit and standing trials, respectively). In contrast, when

today MVPA was low, the effect of reward in the sit trial was

higher than in the stand trial (b ¼ 2.37; 95CI ¼ [1.135; 2.932],

P ¼ 8.94 � 10�7 vs b ¼ 1.78; 95CI ¼ [2.098; 3.854], P ¼ 1.4 � 10�4

for sit and standing trials, respectively). Of note, when today

MVPAwas transformed using the Box Cox transformation, the

moderation did not stand (b ¼ .28; 95CI ¼ [�.01; .58]; P ¼ .061),

but it did when a log1000 transformation that provided a better

distribution of todayMVPAwas conducted (b¼ .37; 95CI¼ [.07;

.67]; P ¼ .014). Since both the analysis with non-transformed

today MVPA and the analysis with transformed MVPA with

the better distribution (log1000) were significant with a P-

value below .02 (P ¼ .012 and P ¼ .014) and a b-value above .36

(b ¼ .38 and b ¼ .37), we considered this moderation effect in

the discussion. However, this result should be treated with

caution, as the third analysis using another, yet less optimal,

transformation (Box Cox) showed no significant effect

(P ¼ .061), although the b-value was similar and in the same

direction (b ¼ .28).

https://doi.org/10.1016/j.cortex.2023.06.011
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Fig. 3 e ERP waveforms and difference wave scalp topographies. Left panel: Grand average waveforms by trial type and

reward. Right panel: Scalp topographies for reward minus no reward difference wave (top) and sit minus stand difference

wave (bottom). Topographies are shown for a window that spanned 252e292 ms after feedback onset, as this was the

average timing of the window in which reward positivity was analyzed.
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4.3. Probability of choosing the stimulus with the higher
sitting likelihood

Table 3 and Fig. 4 show the results for the probability of

choosing the stimulus that was more likely to lead to sitting

(vs standing). Consistent with H3, results showed that the

probability of choosing the stimulus more likely to lead to

sitting increased as the number of trials increased (OR ¼ .32;

95CI¼ [.16; .49], P¼ 1.0� 10�4). For example, at the 20th trial of

the task, participants odds of choosing the stimulus more

likely to lead to sitting than standing was not significant

(OR ¼ .99; 95CI ¼ [.76; 1.30], P ¼ .990), this odd was higher and
significant in the 140th trial of the task (OR¼ 2.33; 95CI¼ [1.64;

3.35], P ¼ 2.0 � 10�6). An exploratory analysis showed no evi-

dence of a quadratic effect of trial number (OR ¼ �.006;

95CI ¼ [�.05; .04], P ¼ .813).

4.4. Influence of reward positivity on the subsequent
decision to choose the same (vs different) stimulus

Table 4 shows the results for influence of reward positivity on

the subsequent decision about whether a participant chose

the same or different stimulus. Contrary to H4, MEM results

showed no evidence that the reward positivity in a given trial

https://doi.org/10.1016/j.cortex.2023.06.011
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Table 3 e Results of the mixed effects models predicting
the probability of choosing the stimulus with the higher
sitting likelihood. Notes. OR ¼ odds ratio. 95
CI¼ confidence interval at 95%. Trial numberwas centered
at the middle (i.e., 80th trial) of the task.

Probability of choosing the “sit”
stimulus

(n ¼ 58)

OR (95 CI) p

Fixed Effects

Intercept .42 (.20; 0.65) 1.7 � 10�4

Trial number .32 (.16; 0.49) 1.0 � 10�4

Random Effects

Participants

Intercept .710

Trials number .371

Corr. (Intercept, trial number) .30

Table 4 e Results of the mixed effects models predicting
the influence of reward positivity on the subsequent
decision to choose the same (vs different) stimulus. Notes.
95 CI ¼ confidence interval at 95%.

Probability of changing of
stimulus

(n ¼ 56)

b (95CI) p

Fixed Effects

Intercept �.51 (�.70;-.31) 1.4 � 10�7

Reward positivity preceding trial �.001 (�.005; 0.001) .301

Random Effects

Participants

Intercept .490

Reward positivity preceding trial 2.9 � 10�5

Corr. (Intercept, trial number) �.47
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predicted subsequent decision to change (vs keep) the selected

stimulus in the subsequent trial.

4.5. Sensitivity analyses related to reward positivity

Overall, results of the sensitivity analyses were consistent

with those of the main analyses. Specifically, for the reward

positivity centered on a peak between 250 and 350 ms, results

showed that reward positivity was larger in reward than no

reward trials (b ¼ 2.25; 95CI ¼ [1.71; 2.79]; P ¼ 2.3 � 10�11), but

this effect was not significantly moderated by the type of trial

(b ¼ .19; 95CI ¼ [�.10; .49]; P ¼ .198). Results showed that

reward positivity averaged across electrodes Cz, CPz, and Pz

(and centered on a peak between 230 and 350ms) was larger in

reward than no reward trials (b ¼ 2.29; 95CI ¼ [1.68; 2.90];

P ¼ 5.1 � 10�10). Moreover, as the significance threshold was

set to .02, the type of trials did not significantly moderate the
Fig. 4 e Odds Ratio for choosing the stimulus that was

more likely to lead to sitting (vs standing) as a function of

trial number. Notes. Errors bars ¼ confidence interval at

95%. Figure shown with uncentered Trial Number.
main effect of reward (b¼ .28; 95CI¼ [.01; .56], P¼ .039). As the

P-value was significant under a less stringent threshold (.05),

we explored the simple effects, which confirmed the absence

of a meaningful moderation pattern as they showed no evi-

dence of a difference between stand and sit trials, be it in the

reward (b ¼ .20, 95CI ¼ [�.28; .69], P ¼ .411) or no reward

condition (b ¼ �.36, 95CI ¼ [�.85; .11], P ¼ .137). Thus, in line

with the main analyses, the effect of reward was not signifi-

cantly more pronounced in the sitting versus standing trials.

4.6. Secondary analyses

4.6.1. Reward positivity
As registered, we tested whether the frequency a reward had

been received (1) up to the current trial, (2) when choosing a

certain stimulus up to the current trial, and (3) on a certain

trial type up to the current trial explained residual variance.

For the frequency related to the type of stimulus or the type of

trial, we built two indicators. The indicator related to the type

of stimulus contrasted the probability of obtaining a reward

when choosing the stimulus with the higher probability to sit

minus the probability of obtaining a reward when choosing

the stimulus with the higher probability to stand. A higher

value indicates a higher reward probability for the sit relative

to the stand stimulus. Likewise, for the frequency related to

the type of trial, we built a variable contrasting the probability

of obtaining a reward following sit trials minus the probability

of obtaining a reward following stand trials. A higher value

indicates a higher reward probability for the sit relative to the

stand trials.

Results testing each indicator separately showed no evi-

dence that the indicator related to reward probability

(b ¼ �.20; 95CI ¼ [�.50; .08]; P ¼ .172), reward frequency

associated to the type of stimulus (b¼�.001; 95CI¼ [�.30; .29];

P ¼ .992), or reward frequency associated to the type of trial

(b ¼ .09; 95CI ¼ [�.20; .39]; P ¼ .526) moderated the two-way

interaction between reward and the type of trial.

4.6.2. Choice of the stimulus
As registered, for themodel testing the probability of choosing

the stimulus more likely to lead to sitting than standing, we

built a variable reflecting the probability that the stimulus

with the higher sit probability led to a sit trial relative to the

https://doi.org/10.1016/j.cortex.2023.06.011
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Fig. 5 e Odds for choosing the sit stimulus as a function of the probability that the stimulus leads to a stand or a sit trial (A)

and odds for changing of stimulus as a function of choice on the previous trial (B). Notes. Error bars and blue

area ¼ confidence interval at 95%. The results illustrated in Fig. 5A should be considered with caution as the P value

(P ¼ .029) was above the alpha level of the study (.02).
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probability that the other stimulus, with the higher stand

probability, led to a sit trial, up to the current trial. Specifically,

this variable (stimulus trial type probability) as well as its

interaction with the number of trials were included in the

model. Consistent with the main analyses, results showed

that the probability of choosing the stimulus more likely to

lead to sitting than standing increased as the number of trials

increased (OR ¼ .30; 95CI ¼ [.15; .46], P ¼ 6.3 � 10�5). However,

and based on a stringent alpha level (i.e., .02), we found no

statistically significant evidence that the actual probability to

sit affected the probability of choosing the sit stimulus relative

to the stand stimulus (OR ¼ .18; 95CI ¼ [.01; .34], P ¼ .029) or

interacted with the number of trials (OR ¼ .08; 95CI ¼ [�.03;

.19], P ¼ .152). Because a less stringent statistical threshold

(.05) would have suggested a positive relationship between the

probability to sit and the probability of choosing the sit stim-

ulus, this relationship is illustrated in Fig. 5A.

4.6.3. Influence of the reward positivity and the subsequent
stimulus choice
As registered, for the model testing the influence of reward

positivity on the subsequent decision about whether a

participant chose the same or different stimulus, we added in

separate models the previous trial type and the probability of

reward up to the current trial, as well as their interactions

with the number of trials. In the model adjusting for the pre-

vious trial type, results showed that the probability of

changing of stimuluswas higherwhen the previous trial was a

stand trial relative to a sit trial (OR ¼ .35; 95CI ¼ [.26; .44],

P¼ 4.8� 10�14) (Fig. 5B). However, results showed no evidence

of an association between reward positivity and the proba-

bility of changing stimulus (OR ¼ �.07; 95CI ¼ [�.14; .001],

P ¼ .052). The two-way interaction between previous reward

positivity and previous trial type was not significant (OR ¼ .07;

95CI ¼ [�.01; .16], P ¼ .122). In the model adjusting for the

probability of reward up to the current trial, no main or

interactive effects were observed (ps > .196).
4.7. Non-registered analyses

None of the exploratory analyses showed significant main or

interactive effects on reward positivity. The main effect of

typical physical activity ranked by quartiles (OR ¼ �.22;

95CI¼ [�.41;�.03], P¼ .019) and the interaction effect between

trial and awareness of the experimental manipulation

(OR ¼ .25; 95CI ¼ [.10; .40], P ¼ 7.4 � 10�4) were the only sig-

nificant effects on the probability of choosing the stimulus

with the higher probability of sitting. Importantly, in the latter

model, the main effect of trial remained significant (OR ¼ .32;

95CI ¼ [.17; .47], P ¼ 1.9 � 10�5). The main effect of preference

for the sit versus stand trials (OR ¼ �1.70; 95CI ¼ [�3.13; �.28],

P ¼ .017) and awareness (OR ¼ �.21; 95CI ¼ [�.39; �.03],

P ¼ .017) as well as the interaction effect between reward

positivity and typical physical activity ranked by quartiles

(OR ¼ �.05; 95CI ¼ [�.10; �.01], P ¼ .009) were the only sig-

nificant effects on the change in chosen stimulus. The simple

effects of the latter 2-way interaction showed that higher

reward positivity was significantly associated with a lower

probability of changing the stimulus chosen but only among

individuals in the highest quartile (Q4: OR ¼ .88; 95CI ¼ [.81;

.96], P ¼ .004). In the lower quartiles, the effect of reward

positivity on the probability of changing the stimulus chosen

was not significant (for Q1: OR ¼ 1.05; 95CI ¼ [.96; 1.29],

P ¼ .215; for Q2: OR ¼ .99; 95CI ¼ [.94; 1.05], P ¼ .855; for Q3:

OR ¼ .93; 95CI ¼ [.88; .99], P ¼ .025).
5. Discussion

5.1. Main findings

The theory of effort minimization in physical activity (TEMPA)

suggests that sedentary behaviors are rewarding (Cheval &

Boisgontier, 2021; Cheval, Radel, et al., 2018). However, direct

evidence supporting its rewarding value is lacking. Here, the

https://doi.org/10.1016/j.cortex.2023.06.011
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objective of this registered report was to test whether seden-

tary behaviors (i.e., retrieving a reward while sitting down)

evoke reward-related brain activity (reward positivity), and

whether this effect is moderated by factors related to energy

expenditure (typical physical activity, physical activity on the

day of the study, physical activity during the experiment).

Moreover, based on reinforcement learning theory (Sutton &

Barto, 2018), we tested whether decisions leading to seden-

tary behaviors are “learned” (i.e., participants learned to

choose a stimulus likely to lead to sitting down), and whether

reward positivity is linked to subsequent decisions (i.e.,

whether reward positivity associated with sitting down after

choosing a stimulus increased the likelihood of choosing the

same stimulus).

At the neural level, results showed that reward positivity

was larger on reward versus no-reward trials, thereby con-

firming the validity of the experimental procedure we used to

evoke reward-related brain activity. However, contrary to our

main hypothesis, we found no evidence that this reward

positivity effect was significantly moderated by the type of

trial (sit vs stand). At the behavioral level, results showed that

the probability of choosing the stimulus more likely to lead to

sitting than standing and squatting increased when the

number of trials increased. In addition, participants were

more likely to change the selected stimulus if the stimulus

they chose on the previous trial led to a stand (vs a sit) trial.

Hence, in line with the theory of effort minimization in

physical activity, and consistent with sitting serving as a

reward in reinforcement learning, our study confirms that

people choose the options associatedwith the least effort. Yet,

our results showed no evidence suggesting this behavioral

pattern could be explained by the reward positivity. Likewise,

we found no evidence suggesting that typical physical activity,

physical activity on the day of the study, or physical activity

during the experiment influenced reward positivity.

Several factors can explain why sitting reward trials did

not lead to larger reward positivity than standing reward tri-

als. First, our paradigm crossing a doors task (Hassall et al.,

2019) with a movement-incentive delay task (Cheval et al.,

2019) may not be suitable for measuring the rewarding value

of sedentary behaviors. In particular, a process of justification

of effort, “a form of cognitive dissonance in which one gives

greater value to outcomes that require greater effort to obtain,

to justify the greater effort” (Aronson & Mills, 1959), may

explain why trials associated with standing (vs sitting) were

not processed as less rewarding in our paradigm. Indeed, in

our task, participants already knew that they would have to

expend energy (i.e., to stand and squat) if they earned a

reward (see Fig. 2, column 4) before finding out whether they

indeed received the reward (see Fig. 2, column 6). Accordingly,

after learning that they would have to expend energy to

retrieve the reward, participants may have raised the

rewarding value of the energy expenditure, midtrial, through

a process of justification of effort (Alessandri, Darcheville, &

Zentall, 2008) before finding out whether they would have to

actually expend energy to retrieve the reward, which was

when the reward positivity was measured.

At the theoretical level, an evolutionary account of human

behavior can largely explain this process of effort justification.

Specifically, since people minimize unnecessary energy
expenditure, investing effort into a given behavior should be

justified by a reward that is worth the investment. As such,

through a rationalization mechanism aiming to reduce the

risk for cognitive dissonance, a conflict that occurs when be-

liefs do not line up with behaviors, people may increase the

value of a reward associated with a behavior as soon as they

engage in this behavior. Of note, thismechanism is not unique

to physical effort and can be extended to other costs, such as

the money invested in an object (e.g., wine) (Schmidt,

Skvortsova, Kullen, Weber, & Plassmann, 2017).

Noteworthy, for physical effort at least, this reasoning

highlights the need to dissociate the mechanisms associated

with the anticipation phase (i.e., the incentive value of a given

potential reward) from those associated with the consumma-

tory phase (i.e., the rewarding activity while the reward is ob-

tained) (Novak & Foti, 2015). In other words, the effect of

physical effort intensity on the reward associated with this

effort during the anticipation phase (i.e., negative relationship)

could be different from its effect during the consummatory

phase (i.e., positive relationship).While people typically behave

in away thatminimizes effort (Klein-Flügge et al., 2016; Pr�evost,

et al., 2010; Skvortsova et al., 2014) ewhich confirms that effort

is essentially processed as a cost and as an aversive experience

to avoid e, once they engage in an effortful behavior, the sub-

jective value of the behavior becomes higher through this effort

justification to reduce cognitive dissonance (“I have engaged a

lot of effort in this behavior, but it is not worth the effort” vs. “I

have engaged a lot of effort in this behavior, and it was worth-

while”). For example, in the study by Palidis and Gribble (2020),

reward-related brain activity was greater when participants

received reward feedback on high-effort trials, an observation

aligned with other studies showing that individuals value re-

wards obtained during high effort more those obtained during

low effort (Inzlicht et al., 2018). In sum, the more a behavior

involves effort, the less people are likely to engage in it, but,

paradoxically, once people are committed to the effort, the

more this effortful behavior is valued. Thus, physical effort can

be avoided (anticipation phase) or valued (consummatory

phase), depending on the behavior phase. The observation that

the effect of reward in the stand trials (vs sit trials) was higher

when todayMVPAwashighwas consistentwith this reasoning.

Indeed,whenpeople already engaged inphysical activity on the

day of the study, the standing trials may be perceived as more

effortful, thereby potentially explaining the higher rewarding

value of such trials via the effort justification process.

Second, EEG primarily records cortical activity

(Krishnaswamy,Obregon-Henao,Ahveninen, et al., 2017).Yet, it

is possible that the brain regions underpinning the rewarding

value of sedentary behaviors are subcortical and not accessible

by EEG. For example, regions typically involved in reward pro-

cessing, such as amygdala, nucleus accumbens, and the ventral

striatum (Corbit& Balleine, 2011; Gottfried, O'Doherty, & Dolan,

2003; Knutson, Adams, Fong, & Hommer, 2001; Pr�evost,

Liljeholm, Tyszka, & O'Doherty, 2012; Roesch & Olson, 2004;

Schultz, Tremblay, & Hollerman, 2000), may not be reflected in

EEG. However, it is important to note that combined ERP-

functional magnetic resonance imagining (fMRI) research has

shown that the blood-oxygen-level-dependent signal in the

ventral striatum is correlated with the amplitude of the reward

positivity, and EEG source localization analysis suggests the
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striatum may be the neural generator of the reward positivity

(Carlson, Foti, Mujica-Parodi, Harmon-Jones, & Hajcak, 2011;

Foti,Weinberg,Dien,&Hajcak, 2011). Thus, variations in reward

positivity amplitude may correspond with changes in the acti-

vationof subcortical regions associatedwith rewardprocessing,

providing indirectmeasures of subcortical activities involved in

reward processing. Nonetheless, future studies using fMRI,

possibility in conjunction with EEG, could be useful to measure

the subcortical regions thatmay process the rewarding value of

sedentary behaviors. Another avenue for future research may

involve examining the role of ERP components other than the

reward positivity in processing the rewarding value of seden-

tary behaviors and influencing the likelihood of choosing

stimuli associated with such behaviors. For example, Meadows

et al. (2016) found the P3b ERP component was sensitive to

reward value, and Fischer and Ullsperger (2013) observed the

P3b predicted future choices in an experimental task. Notably,

in the present study, the P3b seems sensitive to reward feed-

back, with reward trials exhibiting higher amplitude over pari-

etal cortex than no reward trials (Fig. 3).

At the behavioral level, results showing that the probability

of choosing the stimulus more likely to lead to sitting than

standing increased as the number of trials increased was

consistent with existing literature, the theory of effort mini-

mization in physical activity, and the corollary that decisions

leading to sedentary behaviors are reinforced (Cheval &

Boisgontier, 2021; Cheval, Radel, et al., 2018). Experimental

works have shown that humans favor lower rather than higher

effort, everything else being equal (Klein-Flügge et al., 2016;

Palidis & Gribble, 2020; Pr�evost et al., 2010; Skvortsova et al.,

2014). For example, findings have robustly confirmed that

humans process physical effort as a cost in decision-making

tasks and minimize the physical effort required to obtain a

specific reward (Bernacer et al., 2019; Klein-Flügge et al., 2016;

Pr�evost et al., 2010; Skvortsova et al., 2014). Morevoer, from an

health psychology perspective, our current behavioral findings

are consistent with the observation that sedentary-related

stimuli act as temptations (Cheval et al., 2017), and that not

engaging in such behaviors require higher inhibitory and

cognitive function (Cheval et al., 2020a, 2020c). In sum, the

current study provides additional behavioral evidence, based a

whole-body exercise task, that individuals favor the behavioral

alternative associated with the least effort.

Regarding the secondary analyses, tests focusing on the

neural outcomes showed no evidence that the frequency at

which a reward has been received 1) up to the current trial, 2)

when choosing a certain stimulus up to the current trial, or 3)

on a certain trial type up to the current trial were related to the

reward positivity ormoderated the effect of reward depending

on the type of trial. Analyses focusing on behavioral outcomes

showed that the probability of changing the selected stimulus

was higher when the previous trial was a stand trial relative to

a sit trial. This finding was consistent with some empirical

studies (Palidis & Gribble, 2020). For example, in the study by

Palidis and Gribble (2020), results showed participants were

more likely to change their response from the previous trial if

it led to high effort. Morevoer, although not significant based

on the stringent alpha level required by the current journal

(i.e., P < .02), participants were more likely to choose the sit

stimulus when the actual probability of this stimulus leading
to a sit trial was relatively high (P ¼ .029). If this finding would

have been considered significant, it would have provided

additional evidence that people tend to behave in a way that

maximizes the probability to conserve energy.

Regarding the non-registered analyses, if our alpha level

would have been less stringent (e.g., .05), our results would

have suggested that stronger affective attitudes toward

physical activity reduced the probability of choosing the sit (vs

stand) stimulus (P ¼ .044), and that higher perceived exertion

associated with the stand trials (i.e., higher pecevied effort for

the squats) was associated with an increased probability of

choosing the sit (vs stand) stimulus (P ¼ .033). Although not

planned and above the stringent significance threshold, these

findings are consistent with the existing literaturedimproved

affective experience associated with physical activity should

favor engagement in physically active behaviors (Maltagliati

et al., 2023). Finally, results revealed that the increased prob-

ability of choosing the stimulus more likely to lead to sitting

than standing as a function of trial number was more pro-

nounced in people who were aware that one stimulus led to

more sit than stand trials compared to the other stimulus.

Notably, the main effect of trial number was significant even

after accounting for this awareness. Thus, this effect was

observed even in people who were unaware that their de-

cisions were influencing their energy expenditure. That is, the

selection of the behavioral option minimizing effort can also

take place at a rather automatic, unconscious level.

5.2. Limitations and strengths

The present study has some limitations. First, as explained

above, the used paradigmmay have confounded the potential

devaluation of the reward by the physical effort to obtain it

because of a process of effort justification. To reduce the risk

of this potential confounding, future studies need to disen-

tangle the effect of effort at different stages of the decision

process: before (i.e., effort avoidance), during (i.e., effort

minimization), and after (i.e., effort justification) physical ac-

tivity behavior. Such a design may allow for disentangling the

differential effects of effort across stages of behavioral regu-

lation, thus allowing for a more nuanced and accurate

assessment of the effects of effort and reward processing.

Second, while EEG provides an advantage over other brain

imaging techniques in terms of temporal resolution, which

was essential in our study, the use of this techniquemay have

precluded accurate assessment of subcortical brain regions

that may process the rewarding value of sedentary behaviors

as EEG primarily records cortical activity (Krishnaswamy

et al., 2017). Studies based on another non-invasive brain

imaging technique, magnetic resonance imaging (MRI), can

overcome this limitation and provide images with higher

spatial resolution, but lower temporal resolution. Third,

typical levels of physical activity were assessed using a self-

report questionnaire, which may not accurately capture the

actual levels of physical activity, as correlations between self-

report and direct measures of physical activity are low to

moderate (Lee et al., 2011; Prince et al., 2008). Assessment of

usual physical activity using device-based measures, such as

accelerometers, would have provided more reliable and valid

information, as they have shown greater validity and
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reliability than self-report measures (Dowd et al., 2018).

Fourth, the sample was young, healthy, and physically active,

which may have biased the current results as this population

is likely to be less attracted toward effort minimization than

adults who are older, more sedentary adults, or adults with a

health condition, as the latter populations' perception of the

same level of effort is likely higher than the former pop-

ulation's due to greater fatigability (LaSorda et al., 2020) or

chronical pain (Shupler, Kramer, Cragg, Jutzeler, &

Whitehurst, 2019). Therefore, energy-minimizing behaviors

are more likely to elicit reward-related brain activity in older,

more sedentary, and/or less-healthy adults.

5.3. Conclusion

This registered report showed evidence that people behave in

the way that minimizes the effort to invest in the task to

obtain the reward, consistent with the theory that opportu-

nities to minimize energy expenditure are rewarding. How-

ever, we found no evidence that reward-related brain activity

underlies these behavioral manifestations. Future studies

using other EEG paradigms or relying on other methodologies

(e.g., magnetic resonance imaging) are warranted to better

capture the neural mechanisms at works.
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Appendix A. Task instructions read to
participants

“To start each trial, press the bottom (A) button. Each trial

begins with a burnt-orange and a navy-blue square. Select

which color square you want to choose by pressing the left

(X) button or the right (B) button. So, on this trial, if you

choose the burnt-orange square, you would press the ____

button. If you choose the navy-blue square, you would press

the _____ button. YOU SHOULD FOCUS ON SELECTING A

SQUARE BASED ON COLOR, NOT BASED ON LOCATION. In

other words, select a square because it is burnt-orange or

navy-blue, not because it is on the left or right. After making

your selection, you will see a stimulus indicating whether

you will retrieve your reward from the upper or lower

container, if you win a reward. If you see a stimulus with the

container on the upper line, then you will be retrieving your

reward from the upper container. If you see a stimulus with

the container on the lower line, then you will be retrieving

your reward from the lower container. Next, you will see if

you actually won a reward or not. If you see a dollar sign,

then you won a reward. If you see a zero, then you did not

win a reward. If you win a reward from the upper container,

then you will wait until you hear a tone. When you hear a

tone, you will take a coin from the upper container, touch

your butt to the chair, then place the coin in the upper

collection container. You will repeat this sequence four more

times when prompted by a tone. If you win a reward from

the lower container, then you will wait until you hear a tone.

When you hear a tone, you will sit down in the chair and take

a coin from the lower container, then place the coin in the

lower collection container. You will remain seated and reach

into the lower container to retrieve a coin each time you hear

a tone (you will hear four more tones). When you are

prompted to start the next trial, return to a standing position.

If you get feedback that indicates a zero instead of a dollar

sign, then simply remain standing. Each coin represents a

raffle ticket to win $10, so the more coins you earn, the more

likely you are to win $10. On each trial, a certain color square

will give you a certain probability of winning, so, again,

FOCUS ON CHOOSING A SQUARE BASED ON COLOR. How-

ever, there is no strategy for selecting a color square in order

to win. In other words, there is no pattern as to which color

square will give you the best chance at winning from trial to

trial.”
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Appendix B. Fatigue Questions
2. Right now, I have no energy.

0 1 2 3 4 5 6 7 8 9 10

Completely Disagree Completely Agree

3. Right now, I feel physically exhausted.

0 1 2 3 4 5 6 7 8 9 10

Completely Disagree Completely Agree

1. Right now, how fatigued are you?

0 1 2 3 4 5 6 7 8 9 10

Not At All Very Much
Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.cortex.2023.06.011.
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