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A B S T R A C T   

Humans often rely on feedback to learn. Indeed, in learning the difference between feedback and an expected 
outcome is computed to inform future actions. Further, recent work has found that reward and feedback have a 
unique role in modulating conflict processing and cognitive control. However, it is still not clear how conflict, 
especially concerning the processing and evaluation of feedback, impacts learning. To address this, we examined 
the effects of feedback competition on feedback evaluation in a reinforcement learning task. Specifically, we had 
participants play a simple two-choice gambling game while electroencephalographic (EEG) data were recorded. 
On half of the experiment blocks, we reversed the meaning of performance feedback for each trial from its 
prepotent meaning to induce response conflict akin to the Stroop effect (e.g., ‘✓’ meant incorrect). Behaviourally, 
we found that participants’ accuracy was reduced as a result of incongruent feedback. Paralleling this, an 
analysis of our EEG revealed that incongruent feedback resulted in a reduction in amplitude of the reward 
positivity and the P300, components of the human event-related brain potential implicated in reward processing. 
Our results demonstrate the negative impact of conflict on feedback evaluation and the impact of this on sub-
sequent performance.   

1. Introduction 

Learning is dependent upon the comparison of outcomes with ex-
pectations. Consider the following scenario of a school mathematics 
exam. Normally, most students have learned that when their teacher 
returns their marked exam a ‘✓’ indicates a correct response whereas an 
‘£’ indicates an incorrect response. Now imagine what might happen if 
the teacher started grading exams the opposite way – suddenly a ‘✓’ 
indicates a mistake and an ‘£’ indicates a correct answer. With this new 
feedback mapping, students now have to overcome a well-learned 
feedback-to-outcome mapping to understand their score (Schiffer 
et al., 2017). The aforementioned example parallels the well-known 
Stroop phenomenon. In the Stroop task, participants are typically 
asked to report or read-aloud the colour of a word presented on a screen 
(Stroop, 1935). A consistent finding from this body of literature is that 
participants are faster and more accurate at responding when the word- 
colour pairing is congruent (i.e., the word blue in blue colour) than 
when the word-colour pairing is incongruent (i.e., the word red in blue 
colour; see Macleod, 1991 for a detailed review). The most prominent 

explanation of the Stroop Phenomenon posits that slowed or erroneous 
responses arise from competition between the two potential responses 
(Doehrman et al., 1978). 

The impact of response competition is well-studied within the Stroop 
literature. Response conflict has been shown to have a role in the Stroop 
effect with the suggestion that in an incongruent Stroop case there is 
competition between the word reading and colour naming ability of 
participants (Dyer, 1973; Shichel and Tzelgov, 2018; Tillman and Wiens, 
2011; Kiyonaga and Egner, 2014; Szucs and Soltész, 2010; Levin and 
Tzelgov, 2014) which in turn leads to slower reaction times and an in-
crease in errors. In other words, participants have to inhibit the faster 
word reading response in the face of the slower colour naming response, 
this, in turn, produces slower responses when the two responses conflict 
and thus the observed incongruency effect of slower reaction time and 
an increase in errors. Neuroimaging of the Stroop task has shown dif-
ferences in the brain regions activated by congruent and incongruent 
conditions. Specifically, Egner and Hirsch (2005) demonstrated with 
functional magnetic resonance imaging that incongruent trials elicited 
greater frontal activity in the anterior cingulate cortex (ACC) and 
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dorsolateral prefrontal cortex (DLPFC) than in congruent Stroop trials, a 
result the authors interpreted as evidence for increased cognitive control 
in the incongruent condition to resolve response conflict. Indeed, others 
have identified the ACC-DLPFC cortical-subcortical circuit as a locus for 
cognitive control computations (Vanderhasselt et al., 2009; Floden et al., 
2011; Mitchell, 2010). 

Interestingly, the ACC has also been posited to play a role in feedback 
evaluation (Holroyd and Coles, 2002). As such, it stands to reason that 
competition between feedback processes may lead to conflict. For 
instance, research by Krebs et al. (2010) has shown a link between 
reward and conflict processing within the context of the Stroop task. In 
their work, the traditional Stroop task was modified so that a subset of 
task colours was associated with the possibility of reward and partici-
pants were tasked with pressing a button that corresponded with the 
word color. For example, colour names presented in green or blue ink 
colours were associated with reward while colour names presented in 
red or yellow ink were not. While the authors did find that the potential 
for reward decreased reaction time, a curious finding was that subjects 
were slower on incongruent Stroop trials where they were shown a word 
that was previously associated with a rewarding colour (e.g., “GREEN” 
or “BLUE” in the example) compared to trials where the word was not 
previously associated with a rewarding colour (e.g., “YELLOW” or 
“RED” in the example). That is, on trials where the written word was an 
ink colour that was previously rewarded, subjects were slower to 
respond in comparison to trials where the written word was not previ-
ously an ink colour that was rewarded – suggesting that the reward in-
formation of the relevant stimulus dimension (ink colour) had 
generalized to an irrelevant stimulus dimension (written word) in turn 
causing the observed increase in reaction time on those trials relative to 
trials where the written word had was not an ink colour that had been 
rewarded previously. Krebs and colleagues’ results suggest that while 
reward does offer a performance benefit in the Stroop task, previously 
learned reward associations might also inflict a cost on performance – 
which the authors hypothesized was due to the greater interference 
between the response mapping (Krebs et al., 2010; see also Lu et al., 
2013). In other words, Krebs et al.’s results suggest that the impact of a 
previously learned reward mapping can induce greater response 
competition in the Stroop task in some instances. 

Event-related brain potentials (ERPs) provide a means to examine 
the neural processes that underlie reward/feedback processing. The 
reward positivity (or feedback related-negativity – see Krigolson, 2018; 
Proudfit, 2015 for more detail) is an ERP component that is maximal 
around 250 ms after performance feedback (Miltner et al., 1997; 
Proudfit, 2015). This component is most prominent in frontocentral sites 
on the scalp, and source-localization indicates it reflects a signal origi-
nating from within the medial-frontal cortex (specifically, the ACC: 
Holroyd et al., 2004). The reward positivity is thought to reflect a pos-
itive prediction error - when feedback indicates an outcome is better 
than expected - in reinforcement learning tasks, including 
time-estimation (Holroyd and Krigolson, 2007; Holroyd et al., 2008; 
Becker et al., 2014; Williams et al., 2017), gambling (Yeung et al., 2005; 
Zhou et al., 2010; Williams et al., 2016; Hassall et al., 2013), and 
multi-armed bandit tasks (Hassall et al., 2019a, 2019b). Further, the 
amplitude of the reward positivity diminishes with learning, reflecting a 
decreased dependence on feedback for performance evaluation (Kri-
golson et al., 2009, 2014; Walsh and Anderson, 2012; Williams et al., 
2020b). Also evoked by feedback, the P300 is an ERP component 
prominent around 200–600 ms after stimulus onset over posterior 
electrode sites (Duncan-Johnson and Donchin, 1977; Polich, 2007). 
Importantly, the P300 is thought to reflect the functional significance of 
feedback stimuli (Hajcak et al., 2005, 2007; Leng and Zhou, 2010; Zhou 
et al., 2010; Yeung et al., 2005; Sato et al., 2005; Wu and Zhou, 2009). 
Together, the reward positivity and P300 provide an effective means for 
studying feedback processing and the factors that impact it such as 
feedback competition or incongruency. 

Previous work (i.e., Krebs et al., 2010) suggests that reward/ 

feedback itself can create or add to existing response conflict to impact 
performance. In the present experiment, we examined the impact of 
conflict induced by performance feedback by providing both intuitive 
and counter-intuitive feedback in a reinforcement learning task. Spe-
cifically, we hypothesized that feedback competition - a discrepancy be-
tween the prepotent meaning of a feedback stimulus and a newly 
learned associated meaning for a feedback stimulus - would essentially 
create a Stroop-like effect that would impact both behaviour and neural 
processing. To accomplish this, participants completed a two-armed 
bandit task while electroencephalographic data were recorded. During 
the performance of the bandit-task participants received feedback in one 
of two experimental conditions. In the first experimental condition, the 
stimulus-to-feedback mappings were congruent, a checkmark (‘✓’) 
indicated a ‘Win’ trial and a cross (‘×’) indicated a ‘Loss’ trial. To induce 
feedback competition, in the second experimental condition the feed-
back stimulus was incongruent with the outcome of the trial; the feed-
back stimulus normally associated with positive outcomes (‘✓’) was 
presented on loss trials and the feedback stimulus normally associated 
with negative outcomes (‘×’) was presented on win trials. We predicted 
that incongruent trials would be associated with decreased behavioural 
performance and a reduction in the amplitude of the reward positivity 
and P300 relative to congruent trials. As an underlying mechanism, we 
hypothesized that the misleading feedback in the incongruent condition 
would result in a smaller positive prediction error (less feedback value), 
and thus reduce reward positivity amplitude. Similarly, we predicted 
that because the incongruent feedback symbol would not be explicitly 
indicative of performance, thus the functional relevance of that feedback 
will be diminished and P300 amplitude would be reduced. 

2. Results 

2.1. Behavioural results 

Participants selected the square with a higher probability of 
providing a ‘Win’ an average of 64.8% [57.4%, 72.1%] of all experi-
mental trials. Further, we found that participants were selecting the 
higher probability square more often than chance, t = 5.5108, p < 0.001, 
d = 1.006, indicating that they did learn the task. 

A two (condition: congruent, incongruent) by two (outcome: correct, 
incorrect) repeated measures ANOVA demonstrated that response time 
did not differ between outcomes for congruent and incongruent trials, F 
(1,29) = 1.23, p = 0.277. However, participants did respond faster in 
incongruent blocks (M = 214.9 ms, [200.1 ms, 229.5 ms]) than in 
congruent blocks (M = 228.0 ms, [210.1 ms, 245.9 ms], t(29) = 2.19, p 
= 0.037, d = 0.287. 

The repeated measures ANOVA examining accuracy rate revealed an 
interaction between condition and outcome, F(1, 29) = 4.54, p = 0.042. 
Decomposing this interaction revealed that accuracy rate was higher for 
congruent feedback blocks (M = 46.3%, [43.7%, 48.9%]) than incon-
gruent feedback blocks (M = 41.3%, [36.6%, 45.9%]), t(29) = − 1.76, p 
= 0.044, d = − 0.093). 

Our first linear regression analysis on condition and block produced 
a significant reaction (F(2, 585) = 11.8, p < 0.001, R = 0.197), but 
revealed that block order was not a significant predictor of accuracy (B 
= 0.0005, p = 0.210). The second linear regression analysis on condition 
and trial also produced a significant reaction (F(2, 1177) = 25.180, p <
0.001, R = 0.203), but instead revealed that trial was a significant 
predictor of accuracy (B = 0.003, p < 0.001). In both analyses, condition 
was a significant predictor of accuracy (By block: B = -0.112, p = 0.000; 
By trial: B = -0.080, p = 0.000). 

2.2. ERP results 

Statistical analysis revealed that the amplitude of the reward posi-
tivity at channel FCz was greater for congruent outcomes (M = 2.8 μV, 
[1.4 μV, 4.3 μV]) than for incongruent outcomes (M = − 0.12 μV, [− 1.2 
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μV, 0.92 μV]), t(29) = 3.486, p = 0.002, d = 0.881, see Fig. 1. Exami-
nation of the P300 at channel Pz also revealed that the amplitude of this 
component was greater for congruent outcomes (M = 3.5 μv, [2.5 μv, 4.7 
μv]) than for incongruent outcomes (M = − 1.0 μV, [− 1.9 μV, − 0.1 μV]), 
t(29) = 6.579, p = 0.000, d = 1.686, see Fig. 2. 

2.3. stPCA results 

stPCA analysis revealed four spatial factors, accounting for 57.1%, 
10.3%, 7.6%, and 7.2% of the variance, respectively. An examination of 
the spatial factor loadings for each of these factors revealed that the 
second factor had maximal loadings in a frontal-central location 
consistent with the topography of the reward positivity (see Fig. 3). 
Further investigation of this spatial factor via temporal PCA revealed a 

Fig. 1. Grand average conditional ERP waveforms for Channel FCz. Top Panel: Conditional waveforms for congruent trials. Bottom Panel: Conditional waveforms for 
incongruent trials. Shading reflects 99% Within-subjects confidence intervals. 
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temporal factor that accounted for 14.6% of the variance that had 
maximal temporal loadings between 275 and 325 ms, consistent with 
the timing of the reward positivity. When examining the spatial factor 
loadings, we also found that the first factor had maximal loadings in a 
parietal location, consistent with the topography of the P300 (see 
Fig. 3). Further investigation of this spatial factor via temporal PCA 
revealed a temporal factor that accounted for 32.2% of the variance that 
had maximal temporal loadings between 325 and 375 ms, consistent 
with the timing of the P300. 

3. Discussion 

In the present experiment, we examined the impact of conflict arising 
from competing feedback responses on performance and the amplitude 
of event-related potentials associated with feedback processing. Our 
findings demonstrate that feedback incongruent with prepotent mean-
ing affected performance and two neural signals associated with feed-
back evaluation. Specifically, we observed a decrease in response 
accuracy and a decrease in the amplitude of the reward positivity when 
feedback was incongruent with meaning. Analysis of the P300 revealed 

Fig. 2. Grand average conditional ERP waveforms for Channel Pz. Top Panel: Conditional waveforms for congruent trials. Bottom Panel: Conditional waveforms for 
incongruent trials. Shading reflects 99% Within-subjects confidence intervals. 
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the same pattern of results, a reduction in component amplitude in the 
incongruent feedback condition. Further, a spatiotemporal principal 
component analysis affirmed the ERP components we observed were 
indeed the reward positivity and the P300. Our results can be explained 
with two different, but convergent, explanations. 

Our results can be interpreted within the framework of previous 
investigations from the Stroop paradigm – extending findings from the 
Stroop paradigm to conflict/competition during feedback processing. 
We suggest that our accuracy and ERP effects, lower accuracy and a 
reduction in the amplitude of the reward positivity and the P300, for 
incongruent as compared to congruent trials are similar to the tradi-
tional Stroop effect brought about by response conflict (Stroop, 1935; 
MacLeod, 1991; see also Entel et al., 2015). Specifically, the reduction in 
component amplitude that we observed could be driven by an increase 
in N2 amplitude related to an increase in cognitive control and conflict 
monitoring (Folstein and Van Petten, 2007; Yeung and Cohen, 2006). In 
our paradigm, on incongruent trials, the presentation of stimuli with 
well-learned associations with correct and incorrect outcomes (the ‘✓’ 
and the ‘×’) were superimposed with actual meanings that were oppo-
site to their prepotent interpretation. We posit this created conflict 
similar to the response conflict that is observed in a traditional Stroop 
paradigm. However, in our case, the conflict is related to 
feedback-outcome mappings, or competition between what the feed-
back symbol traditionally indicates and what it indicated within the 
incongruent trials. In line with previous work (i.e., MacLeod, 1991; 
Krebs et al., 2010), the conflict resulted in reduced performance and, in 
a novel finding, also a reduction in ERP components associated with 
reward processing (i.e., the reward positivity and the P300). Supporting 

this, prior work has shown that congruency effects with reward pre-
dictive stimuli increase response conflict in the Stroop paradigm (Krebs 
et al., 2010). In our task, the prepotent feedback-reward association (‘✓’ 
means correct) may have overcome the newly learned stimulus associ-
ation (‘✓’ means wrong) in incongruent blocks, disrupting performance 
in incongruent trials. Indeed, our findings and those reported by Krebs 
and colleagues suggest that rewarding stimuli can bias con-
gruent/incongruent associations and thus may have done so in the 
present experiment via prepotent feedback-reward associations. 

An alternative account for our results is that incongruent feedback 
increased cognitive load. In other words, by reversing the meaning of 
feedback on incongruent trials, we created an increased demand for 
cognitive resources. As such, the ability of the medial-frontal system to 
evaluate feedback was reduced, which we saw as a reduction in accuracy 
and a decrease in the amplitude of the reward positivity and the P300. 
Indeed, our results of the reduction in the amplitudes of the reward 
positivity and the P300 are similar those in previous experiments from 
our laboratory (Krigolson et al., 2012, 2015) where performance and 
ERP component amplitudes were reduced by increased cognitive load. 
Introducing the need for two cognitive processes, feedback evaluation 
and conflict resolution, also introduces competition for cognitive re-
sources. The sum of required resources for both processes was greater 
than those available, and as a result feedback evaluation did not have 
sufficient resources. Put simply, cognitive resources typically used for 
feedback evaluation may be instead diverted to conflict processing, 
resulting in a reduced or absent reward signal (Krigolson et al., 2015). 

Perhaps the most satisfying explanation for our findings is a synthesis 
of the two accounts presented above. A unifying explanation may be that 

Fig. 3. Topographic maps. Top Panel: Grand average topographic maps for congruent wins, centered on maximal points for the reward positivity (left) and the P300 
(right). Bottom Panel: Topographic maps for stPCA analysis. Left: Spatial factor two, accounting for 10.3% of the variance. Right: Spatial factor one, accounting for 
57.1% of the variance. 
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when feedback is evaluated in the incongruent condition, additional 
cognitive resources are allocated to aid in conflict resolution which is in 
effect an increase in cognitive load. As a result, cognitive resources that 
may have been used for the evaluation of feedback within the anterior 
cingulate cortex (see Holroyd et al., 2004) may have instead been used 
by processes within this same neural region to resolve conflict (Kerns 
et al., 2004; Botvinick et al., 2004; Mansouri et al., 2017). Another way 
of stating this would be to say that as there is an increased demand 
within the anterior cingulate cortex to resolve feedback conflict then is a 
concomitant decreased ability to evaluate feedback. We note here that 
we did not use source localization in the present experiment and are 
relying on converging evidence from a multitude of studies that have 
localized the reward positivity and the evaluation of response conflict to 
the anterior cingulate cortex (Holroyd et al., 2004; Brown and Braver, 
2005; Critchley et al., 2005; Holroyd and Yeung, 2012; Rushworth et al., 
2007; Alexander and Brown, 2019; Orr and Hester, 2012; Kerns et al., 
2004; Botvinick et al., 2004; Mansouri et al., 2017). The next step in this 
research line is to dissociate the effects of cognitive load and response 
conflict on reinforcement learning systems. 

The present research is not without limitations. First, the reward 
positivity is typically elicited in tasks that emphasize rewarding out-
comes (ex. Williams et al., 2016; Hassall et al., 2013). In our study, we 
participants did not explicitly receive a reward, but rather a binary 
indication of performance (‘Win’ or ‘Loss’), which could have influenced 
feedback processing in itself. Further, our behavioural results do not 
explicitly follow the expected patterns observed in Stroop tasks 
(increased reaction time and decreased accuracy in incongruent trials), 
suggesting that feedback conflict may not be similar to response conflict 
in terms of cognitive processing. One possible explanation is that the 
inter-trial waiting period was not random enough, leading to an effect of 
response predictability. 

In conclusion, here we demonstrate that feedback conflict (and/or 
cognitive load) impacts a neural system associated with human rein-
forcement learning. Specifically, we have shown that altering the 
valence of feedback in a gambling task has negative effects on perfor-
mance and neural learning signals. We have also presented potential 
explanations for these effects, namely a feedback-conflict-induced 
Stroop effect and cognitive load. Overall, our results suggest that 
competition between well-established and counterintuitive feedback 
mappings can lead to diminished feedback evaluation, and this 
perceptual conflict can be indexed by prevalent ERP components. Un-
derstanding how different sources of conflict processing can be elicited 
and measured in experimental paradigms is important for expanding our 
understanding of the Stroop phenomenon and cognitive control in 
general. Further, our results emphasize the prevalence of pre-existing 
feedback mappings in learning, which has implications for methods of 
providing feedback in education. Further work should aim to investigate 
how either of these phenomena may uniquely affect the medial learning 
system and other aspects of cognition. 

4. Experimental procedure 

4.1. Participants 

Thirty undergraduate students (6 male, 24 female, mean age 21 years 
old [CI: ± 1 year]) from the University of Victoria were recruited to 
participate in this study. All participants volunteered through the Uni-
versity of Victoria’s online research participation system and were 
compensated with course credit in a psychology course. Previous work 
in our laboratory (Williams et al., 2020a) that conducted an ERP 
experiment with a sample size of 500 found that detecting a reward 
positivity elicits a large effect size of 0.8, following recommendations 
from Cohen (1988). As such, we conducted a power analysis for a 
repeated measures t-test using this standardized effect size, an alpha of 
0.05, and the desired power of 0.95, which yielded a prospective sample 
size of 22 participants. Moreover, our laboratory follows a protocol 

wherein ERP studies include a minimum of 30 participants, which 
would correspond to a power of 0.99. To avoid conducting under- 
powered research (see Ioannidis, 2005) we tested participants until we 
had thirty data sets of sufficient behavioural and EEG data quality 
(actual n = 37, data with an EEG artifact rejection rate greater than 40% 
resulted in the testing of another participant). Prior to commencing the 
experiment, all participants provided informed consent in agreeance 
with the guidelines established by the University of Victoria Human 
Research Ethics Board (Ethics Protocol Number: 16–428) and followed 
the ethical standards specified in the 1964 Declaration of Helsinki. 

4.2. Apparatus and procedure 

Participants completed a modified computer version of a two-armed 
bandit task (Sutton and Barto, 1998; see Fig. 4) in a sound dampened 
room in which EEG data was recorded. During the performance of the 
two-armed bandit task participants completed a series of gambles by 
selecting between one of two coloured squares presented on a standard 
19′′ LCD monitor. 

Each trial began with the presentation of a black fixation cross for 
500 ms after which two-coloured squares also appeared onscreen for an 
additional 500 ms. Next, a change in the colour of the fixation cross to 
grey signalled participants to select one of the two squares using a 
computer gamepad. Following the selection of a square, both of the 
squares disappeared and the fixation cross changed back to black fixa-
tion for 300 to 500 ms. After this, a feedback symbol indicating the 
outcome of the trial appeared in place of the fixation for 1000 ms. The 
next experimental trial began immediately after the offset of the feed-
back stimulus. Based on previous work in our laboratory (Colino et al., 
2020; Krigolson et al., 2017; Howse et al., 2018), one square colour had 
a higher probability of winning than the other square colour (60% 
versus 10%) to ensure an approximate number of win and loss trials per 
participant. As stated, these specific percentages were used to make the 
task learnable (i.e., one square won more often than the other so there 
was an optimal choice on each trial) and to ensure a win/loss rate of 
roughly 50% to avoid frequency contamination of the N200 (see Hol-
royd, 2004). As the task was learnable, the participants were instructed 
that their goal was to determine the “winning” coloured square each 
block and pick that colour to win as many times as possible. They were 
also informed that one of the squares was more likely to provide a win 
than the other, but also that both squares had the potential to be a 
winning square throughout the block. 

In the present experiment the key manipulation related to the vari-
ation of feedback congruency. Specifically, for half of the experimental 
blocks feedback was congruent and participants saw a ‘✓’ each time the 
won a gamble and an ‘×’ each time they lost a gamble. For the other half 
of the experimental blocks, the feedback was incongruent; participants 
saw an ‘×’ each time they won a gamble and a ‘✓’ each time they lost a 
gamble. Thus, our definition of congruency was yoked to the notion that 
participants would instinctively process a ‘✓’ as a win and an ‘×’ as a 
loss during incongruent blocks and would have to override this pro-
cessing with the incongruent ruleset to determine the actual gamble 
outcome (see Schiffer et al., 2017). Each block began with an instruction 
screen emphasizing the meaning of the feedback symbol (congruent: ‘✓’ 
= win and ‘×’ = loss; incongruent ‘×’= win and ‘✓’ = loss) and a 
research assistant verified verbally that each participant knew the 
feedback structure for the block. Each block ended with a screen 
informing the participant of the number of times they had selected the 
optimal response option. The colours for the squares were randomly 
chosen each block and not repeated and the location of each square (i.e. 
left versus right) was randomly determined on each trial. The experi-
ment consisted of 20 blocks of 20 trials, with 10 blocks of each condition 
randomly sequenced. The task was programmed in MATLAB (Version 
9.6, Mathworks, Natick, USA) using the Psychophysics Toolbox exten-
sion (Brainard, 1997) and participants used a ResponsePixx, VPixx 
Technologies, button box to make their selection. 
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4.3. Data acquisition 

Response time (ms) and accuracy (Win or Loss) were recorded by the 
MATLAB (Version 9.6, Mathworks, Natick, USA) experiment script. EEG 
data were collected from 64 active electrodes, mounted in a 10–20 
layout fitted cap (ActiCAP, Brain Products GmbH, Munich, Germany), 
using Brain Vision Recorder software (Version 1.21, Brain Products 
GmbH, Munich, Germany). All electrodes were referenced to electrode 
AFz during recording, and impedances were maintained below 20 kΩ at 
all times. EEG data were recorded at a sampling rate of 500 Hz, ampli-
fied (ActiChamp, Revision 2, Brain Products GmbH, Munich, Germany), 
and filtered through an antialiasing low-pass filter of 245 Hz. 

4.4. Data analysis 

4.4.1. Behavioural Data Analysis 
For both the congruent and incongruent conditions, we computed 

each participant’s mean response time and accuracy rate. The response 
time was calculated as the mean time it took for participants to select 
one of the squares using the button box after the fixation cross turned 
grey, signalling when the participant was permitted to respond in each 
block. The accuracy rate was calculated as the percentage of all valid 
trials (excluding early responses or responses made with an invalid 
button) within a condition (congruent or incongruent) that resulted in 
’Win’ feedback for the participant. Additionally, to confirm participants 
were learning how to complete the task regardless of ’Win’ feedback, we 
assessed if the participant was choosing the higher probability square 
more often. Next, we binned participant’s accuracy data by trial 
(Participant × Trial × Condition) and by block (Participant × Block ×
Condition). 

We submitted mean response time and accuracy to a two (condition: 
congruent, incongruent) by two (outcome: win, loss) repeated measures 
ANOVA to determine if there was an interaction between condition and 
trial outcome. To examine significant interactions, we used paired 
samples t-tests (α = 0.05), 95% confidence intervals, and effect sizes 
(Cohen’s d). We submitted binned trial and block data to two linear 
regression analysis to determine if linear combinations of Condition and 
trial or block, respectively, could predict accuracy. We completed this 
analysis to determine if any potential accuracy effects revealed in the 
repeated measures ANOVA were actually due to accuracy differences at 
the beginning and end of a given block. All statistical operations were 
also conducted in SPSS (Version 26.0, IBM, Armonk, USA), except for 
the statistical power calculation mentioned in section 4.1, which was 
done using the “pwr” R package (Champely et al., 2018; R Core Team, 
2020). 

4.4.2. EEG data processing 
All EEG data were processed using MATLAB (Version 9.6, 

Mathworks, Natick, USA), using the EEGLAB open-source toolbox 
(Delorme and Makeig, 2004) and custom software developed in the 
Krigolson Laboratory, available here: https://github.com/neuro-tools. 
First, channels were visually inspected for noisy data and removed 
accordingly. Continuous EEG data were then re-referenced to mastoid 
channels (TP9, TP10). A dual-pass phase free Butterworth filter with a 
band-pass of 0.1 Hz to 30 Hz and a 60 Hz notch filter were applied to the 
re-referenced EEG data. To identify and remove ocular artifacts, an in-
dependent component analysis (ICA) was conducted on the filtered data 
to identify components associated with ocular artifacts (Delorme and 
Makeig, 2004). Visual examination of the ICA factor loadings, as well as 
cross-correlations between EEG data and ICA component activations, 
guided selection of components that contained eye blinks so that they 
could be removed. Following the removal of components that were 
associated with ocular artifacts, the EEG data were reconstructed from 
the remaining ICA components. At this point, channels that were 
removed at the beginning of the analysis were re-interpolated using the 
method of spherical splines. All data were segmented by condition and 
feedback outcome into shorter epochs spanning from − 200 ms to 600 ms 
after the stimulus presentation. The segments were then baseline- 
corrected using the 200 ms window prior to feedback onset. Segments 
were then examined for artifacts and segments of data containing a 
gradient larger than 10 µV/ms or segments with an absolute difference 
of more than 150 µV were removed which resulted in an average of 
19.9% [12.5%, 27.4%] of data being lost across participants. 

4.4.3. EEG component analysis 
Following artifact rejection, ERPs were created by averaging the 

segments for each of the two experimental conditions (congruent, 
incongruent) and each of the two outcomes within each condition (win, 
loss) resulting in separate ERP waveforms for win congruent, loss 
congruent, win incongruent, and loss incongruent trials. First, we 
created conditional difference waveforms by subtracting the average 
loss waveform for a condition from the average win waveform of the 
same condition (ex. Congruent: [congruent win – congruent loss]). Next, 
overall difference waveforms for each participant were created by sub-
tracting the average loss waveform from the average win waveform 
collapsed across both conditions ([congruent win + incongruent win] – 
[congruent loss + incongruent loss]). Finally, grand average condition 
and difference ERPs were generated by averaging the respective indi-
vidual ERP waveforms. 

To ensure we did not bias our timings based on conditional effects, 
we used the overall difference waveforms to find our component timings 
and calculated ERP amplitudes based on their respective channels. We 
found that Channel FCz was maximal at 292 ms, so the reward positivity 
was then quantified for each participant and condition as the mean 
amplitude ± 25 ms of the grand average peak (292 ms) on the condi-
tional difference waveforms. The P300 was then quantified for each 

Fig. 4. A single trial of the modified two-armed bandit task. After a fixation symbol is presented, two different-coloured squares appear on the screen and the 
participant must select one of them using the button box. In this example, the red square gives a ‘Win’ outcome, so in congruent blocks the participants see a ‘✓’, and 
in incongruent blocks participants see a ‘×’. 

M.R. Hammerstrom et al.                                                                                                                                                                                                                     

https://github.com/neuro-tools


Brain Research 1761 (2021) 147393

8

participant and condition as the mean amplitude ± 25 ms of the grand 
average peak (304 ms) channel Pz. Using these values, we compared the 
congruent and incongruent difference waves using a dependent-samples 
t-test. Topographies for the reward positivity and the P300 were 
computed at the individual point of maximal difference. 

4.4.4. Spatiotemporal principal components analysis 
To provide further evidence of the topography and timing of the 

reward positivity and the P300 we submitted our ERP data to a spatio-
temporal Principle Components Analysis (stPCA: see Dien, 2010a) using 
custom MATLAB code and the EP Toolkit (Dien, 2010b). The spatial data 
(channels) were submitted to a PCA with an Infomax rotation. Visual 
inspection of the resulting spatial factors guided the selection of a factor 
with maximal frontal-central loadings for the reward positivity and with 
maximal central-parietal loadings for the P300. The data for these 
spatial factors were then reshaped with time as the independent variable 
and were submitted to a temporal PCA with Promax rotation (see Dien, 
2010a). 
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