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Objects that are rare are often perceived to be inherently
more valuable than objects that are abundant – a bias
brought about in part by the scarcity heuristic. In the present
study, we sought to test whether perception of rarity
impacted reward evaluation within the human medial-
frontal cortex. Here, participants played a gambling game in
which they flipped rare and abundant ‘cards’ on a computer
screen to win financial rewards while
electroencephalographic data were recorded. Unbeknownst
to participants, reward outcome and frequency was random
and equivalent for both rare and abundant cards; thus, only
a perception of scarcity was true. Analysis of the
electroencephalographic data indicated that the P300
component of the event-related brain potential differed in
amplitude for wins and losses following the selection of rare
cards, but not following the selection of abundant cards.
Importantly, then, we found that the perception of card rarity
impacted reward processing even though reward feedback

was independent of and subsequent to card selection. Our
data indicate a top-down influence of the scarcity heuristic
on reward evaluation, and specifically the processing of
reward magnitude, within the human medial-frontal
cortex. NeuroReport 27:522–526 Copyright © 2016
Wolters Kluwer Health, Inc. All rights reserved.
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Introduction
To make decisions, we frequently rely on heuristics, or

rules of thumb, to solve complex problems [1]. For

instance, when attempting to determine the value of

unknown items, we may utilize the scarcity heuristic – an

assumption that rare items are inherently more valuable

than abundant items simply because they are rare. A

classic example of the scarcity heuristic is the valuation of

rare marbles: children afford white marbles more value

simply because white marbles are quite rare, even though

they are equivalent in financial value to other marbles.

The marble example is backed up by a multitude of

behavioural studies that show that scarce items are per-

ceived as being more valuable than abundant items, even

though there is no evidence to justify this supposition

[2–5]. For example, in one study, Parker and Lehmann

[4] found that when participants were presented with an

array of two different wines to pick from, they more often

chose a wine bottle that was scarce rather than one that

was abundant, even though there was no other basis for

their decision. Although there is a large body of beha-

vioural evidence documenting the scarcity heuristic, little

is known about how the scarcity heuristic biases decision-

making processes within the brain.

At the neural level, decision-making processes are

dependent on learning systems within the brain to learn

values to optimize response selection [6–9]. Neural

learning systems are typically thought to have at least two

key (and perhaps more) components that are temporally

independent [10,11]. For example, studies using elec-

troencephalography (EEG) have found that the reward

positivity – a component of the human event-related

brain potential (ERP) associated with reward evaluation –

reflects an early reward evaluation process sensitive to

the discrepancy between outcomes and expectations (i.e.

‘prediction errors’ [6–9]). Subsequent to the reward

positivity, late reward processes are more focused on the

allocation of attentional resources to facilitate the

updating of reward contingencies and are thought to be

indexed by the P300 ERP component. The P300 typi-

cally occurs 400–600 ms following a visual stimulus and

has been shown to be sensitive to the updating of internal

models and/or reward valence [10–13]. Given that the

scarcity heuristic is believed to bias perception of value,

one may posit that the scarcity heuristic biases early, late

or both levels of reward processing.

In the present study, we sought to investigate the effects

of the scarcity heuristic on reward evaluation within the

medial-frontal cortex. Participants completed a compu-

terized gambling task, wherein they ‘flipped’ scarce and

abundant cards to win financial rewards while EEG data

were recorded. Unbeknownst to participants, their wins

and losses were independent of card selection – gambling

outcomes were random. We hypothesized that
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participants would be biased by the perception of card

scarcity and that this would in turn bias reward evalua-

tion. Specifically, we predicted that gambling outcomes

following the selection of rare cards would be biased by

the scarcity heuristic – a result that we would observe as a

differential modulation of one or more components of the

human ERP known to be associated with reward pro-

cessing – the reward positivity [6–8] and/or the P300

[10–14]. However, our initial belief was that the per-

ception of card scarcity would not bias early reward pro-

cessing. Indeed, we hypothesized that the amplitude of

the reward positivity would not show a scarcity bias,

given that previous work has shown a lack of sensitivity

of this component to reward value [6,15,16].

Materials and methods
Participants

Seventeen right-handed undergraduate students (10

women, age range 18–25 years) with no known neurolo-

gical impairments and normal or corrected-to-normal

vision were recruited using the UBC Psychology

Research Participation System. However, we excluded

three of the 17 participants completely from further

analysis because they did not follow task instructions.

Participants provided informed consent as approved by

the UBC Office of Research Ethics: Human Ethical

Review, and the study was carried out in accordance

with the ethical standards as prescribed in the 1964

Declaration of Helsinki. Participants were compensated

by obtaining three course credits and a monetary bonus

on the basis of a proportion of their total winnings (∼ $10

on average).

Apparatus and procedure

Participants were seated in a sound-dampened room in

front of a 19″ LCD computer monitor and used a stan-

dard USB mouse to perform a gambling task [written in

Matlab (version 8.4; Mathworks, Natick, Massachusetts,

USA)] using the Psychophysics Toolbox extension [17].

At the start of each trial of the gambling task, participants

viewed a five by five array of coloured ‘cards’ (squares) on

a black background (Fig. 1). The cards were either one of

two randomly generated colours, with one colour being

scarce and the other being abundant. The number of

scarce cards (n: ∼20%) was determined from a Gaussian

distribution (M= 5, SD= 1); the rest of the cards (25− n:
∼ 80%) were considered abundant. Note, however, no

less than three scarce cards were ever presented for

methodological reasons (see below). Following initial

viewing of the card array, participants were instructed to

select six cards one at a time with the constraint that they

had to select three cards of each colour. Following the

selection of each card, a white fixation cross appeared

within the centre of the selected card for 1000–1200 ms.

Subsequent to the fixation cross, the card ‘flipped’ and a

reward feedback stimulus appeared for 1000ms. Reward

feedback was either a ‘$’ or a ‘0’, indicating, respectively,

a win or a loss (equivalent probability of either outcome).

After presentation of reward feedback, the card dis-

appeared from the screen and participants were promp-

ted to select another card. This process continued until

six cards had been selected in total – three that were

scarce and three that were abundant. Thus, our method-

ology created four feedback conditions: scarce win, scarce

loss, abundant win and abundant loss. Information on the

amount won from each gamble was not presented after

each selection, but instead, at the end of the trial. The

total reward payout for each trial was generated using a

random number from a Gaussian distribution (M= 80,

SD= 10) to prevent the participants from learning that

reward outcomes were random and independent of card

selection. Participants completed 40 trials for a total of

240 individual gambles (120 scarce, 120 abundant).

Data acquisition

The EEG was recorded from 40 electrode locations using

ActiView software (Biosemi B.V., Amsterdam, The

Netherlands). The electrodes were mounted in a fitted

cap with a standard 10–20 layout and were referenced to a

two-electrode feedback loop (common mode sense to

driven right leg). The vertical and horizontal electro-

oculograms were recorded from electrodes placed above

and below the right eye and on the outer canthi of the left

and right eyes, respectively. Electrode offsets were

Fig. 1

Display of the task when participants had to choose which ‘card’
(square) to gamble on. This display included an array of 25 cards, each
of which are one of two colours. One of the colours was rare (e.g. dark
grey) and the other was abundant (e.g. light grey).
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maintained below ± 25 mV at all times. The EEG

data were sampled at 256 Hz and amplified using

an Active Two system (Biosemi B.V., Amsterdam,

The Netherlands).

Data analysis

Offline EEG data analyses were carried out using Brain

Vision Analyzer 2.0 software (Brainproducts GmbH,

Munich, Germany). First, channels that were determined

to have excessive artefacts and/or noise were excluded

from analysis. Next, the EEG data were re-referenced to

an average mastoid reference and filtered using a dual-

pass Butterworth filter (0.1–30 Hz; also a 60 Hz notch

filter was applied). Segments of data 3000 ms in length

were then extracted from the continuous EEG locked to

the onset of each occurrence of a feedback stimulus.

Each segment spanned from 1000 ms before the event of

interest to 2000 ms after; epoch length was chosen to

facilitate independent component analysis. Independent

component analysis was then used to remove ocular

artefacts [18]. Following the independent component

analysis, missing channels were interpolated using

spherical splines. Data were then resegmented into

shorter epochs spanning from 200 ms before to 600 ms

after each event of interest for each of the feedback

conditions: scarce win, scarce loss, abundant win and

abundant loss. Subsequent to this, a baseline correction

was implemented using the 200 ms before feedback sti-

muli onset for each segment. Next, segments for each of

the four feedback conditions were subjected to an arte-

fact rejection algorithm with a 10 µV/ms gradient and 150

µV absolute difference criteria. The artefact algorithm

resulted in an average of 1.0% (0.2–1.7%) of the data

being excluded from further analysis.

Average ERP waveforms were created for each partici-

pant by averaging the segmented EEG data for each

electrode and each condition (scarce win, scarce loss,

abundant win, abundant loss). Difference waveforms for

each participant were then constructed by subtracting

average loss waveforms from average win waveforms for

both the scarce and the abundant conditions [18]. Finally,

for each feedback condition and the two difference

waveforms, we constructed grand average waveforms

by averaging corresponding waveforms across all

participants.

Given our hypotheses, we focused subsequent analyses

on two components of interest: the reward positivity and

the P300. We quantified the reward positivity for each

participant and condition (scarce, abundant) as the max-

imal positive deflection on subject difference waveforms

at channel FCz within a 100 ms window surrounding the

peak difference of the reward positivity on the appro-

priate grand average difference waveform (Table 1). We

focused our analysis on channel FCz and a 100 ms time

window because of visual inspection and previous lit-

erature [6–8]. We quantified P300 amplitude using the

same process, but at a different electrode site, channel Pz

(Table 1). Again, our quantification was based on visual

inspection and previous research [10–13].

Single-sample t-tests were used to test for component

existence [8] and paired-samples t-tests were used to

compare condition effects. Component existence ana-

lyses were carried out by determining whether there was

a significant difference between win and loss waveforms

for each component in each condition. Difference

waveform analyses were carried out by determining

whether there was a significant difference between

component amplitudes across conditions. An α level of

0.05 was assumed for all statistical tests. Error measures

for descriptive and inferential statistics reflect 95% con-

fidence intervals [19].

Results
Our analysis of the grand average ERP waveforms indi-

cated components with scalp topography and timing

consistent with the reward positivity and the P300

(Fig. 2). The components were quantified as the minimal

(reward positivity) or the maximal (P300) measure of each

deflection. The reward positivity was maximal at front-

central areas of the scalp (i.e. channel FCz) and the P300

was maximal at parietal-central areas of the scalp (i.e.

channel PZ) for both conditions. Single-sample t-tests
showed component existence for the reward positivity

[scarce: t(13)= 3.27, P= 0.006; abundant: t(13)= 2.37,

P= 0.034] and a difference in the P300 between wins and

losses in the scarce condition, t(13)= 2.88, P= 0.013. A

single-sample t-test indicated that the P300 did not differ

between wins and losses in the abundant condition,

t(13)= 0.19, P= 0.850.

Experimental condition (scarce, abundant) did not

impact the amplitude of the reward positivity [2.92 μV
(2.00–3.85 μV) vs. 2.31 μV (0.99–3.64 μV)]. Specifically,

our statistical comparison showed that the amplitude of

the scarce reward positivity and the abundant reward

positivity did not differ, t(13)= 0.99, P= 0.341, d= 0.26,

effect= 0.61 μV (− 0.72 to 1.94 μV). However, we did

observe that the amplitude of P300 was impacted by

Table 1 Average peak times with 95% confidence intervals of the
reward positivity at channel FCz and the P300 at channel Pz, with
intervals of analysis for both conditions

Components Condition

Peak
time
(ms)

95% CI
(± ) (ms)

Minimum
interval (ms)

Maximum
interval (ms)

Reward positivity Scarce 320 9 270 370
Abundant 319 13 269 369

P300 Scarce 405 15 355 455
Abundant 399 14 349 449

Intervals for the reward positivity and the P300 were ±50ms centred on the
average peak times.
CI, confidence interval.
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experimental condition [scarce: 4.81 μV (2.94–6.69 μV)
vs. abundant: 3.31 μV (1.67–4.95 μV)]. Specifically, our
statistical comparison showed that the P300 was larger for

gambles in the scarce as opposed to the abundant con-

dition, t(13)= 3.11, P= 0.008, d= 0.83, effect= 1.50 μV
(0.46–2.54 μV).

Discussion
In the present study, we have shown that the scarcity

heuristic biased human reward processing. We found that

the amplitude of the P300, an ERP component that has

been shown to be sensitive to reward magnitude, was

enhanced for gambles that were perceived to be scarce

relative to gambles that were perceived to be abundant –

a result congruent with studies that have shown that

scarcity enhances the perceived value of objects [2–5]. It

is important to note here that the scarcity bias carried

over from gamble selection, wherein we did bias per-

ception of scarcity to gamble outcome that was actually

equivalent and equiprobable, thus negating potential

ERP frequency confounds [15]. In line with our

hypotheses, we also found that early reward processing

(i.e. the reward positivity) was not impacted by percep-

tion of scarcity – a result that makes sense, given that the

amplitude of the reward positivity is typically considered

to be insensitive to reward magnitude [6,15,16]. Our

study thus also supports a dissociation between early and

late reward processing. Specifically, the differential bias

Fig. 2
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of the scarcity heuristic on late but not early reward

processing supports the independence of these two pro-

cesses – a result in line with previous findings [12,13].

A multitude of behavioural studies have shown that the

scarcity heuristic impacts perception of value [2–5]. Here,

we show that heuristics bias neural processes – our data

provide evidence of a top-down influence of the scarcity

heuristic on reward processing. A key problem with

reinforcement learning (RL) explanations for human

learning is that RL solutions are very slow in complex

environments [9]. For example, RL solutions for the

game of chess are impractical without modification. One

possible way to modify RL solutions to ‘speed them up’

when faced with complex problems is through the use of

heuristics. Indeed, heuristics by definition are ‘short-cuts’

that facilitate our ability to learn quickly and thus make

more rapid decisions [1]. Importantly, our data support

this contention and suggest that heuristics do influence

reward processing, perhaps in part to speed up learning

and/or complex decision processes.

Interestingly, here, we observed that the bias of scarcity

was independent from others – we observed a scarcity

bias for a participant performing a task in isolation.

Specifically, we observed the scarcity bias in a study

where the influence of others did not affect the partici-

pant’s current selection, nor did the participant’s

response affect the selection of others. As the scarcity

effect was still observed in our study, our data suggest

that the bias is actually independent of the influence of

others. As such, our results are in contrast to claims that

this bias may be driven by external factors such as

popularity [4] and uniqueness from others [20]. Instead,

our results indicate that the scarcity bias must be derived

by more internal factors, for example – increased atten-

tion [21].

An alternative explanation of our findings could be that

the process used to manipulate reward magnitude (scar-

city) affected RL differently than more traditional

methods (e.g. presenting different magnitudes of

rewards). As indicated above, our results suggest that

the scarcity bias is driven by internal factors, possibly

increased attention [21]. Therefore, the effect that we

observed could rather be an effect of attention rather than

magnitude. The P300 is indeed influenced by attention

[22,23]; however, this alternative seems unlikely because

studies have also found attention to modulate the reward

positivity [24,25]. Therefore, we believe that our data do

support a top-down influence of the scarcity heuristic on

reward processing.

Conclusion
Our results support the claim that top-down processes

such as the scarcity heuristic enhance the perceived value

of items as we found that P300 amplitude was differen-

tially modulated by perceived scarcity. Furthermore, we

found that the scarcity bias extends to late, but not early

reward processing, supporting the independence of these

two components of reward evaluation.
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